
A portable compiler-integrated approach to permanent

checking

Nic Volanschi (nic.volanschi@free.fr)
mygcc

Abstract. Program checking is now a mature technology, but is not yet used on a
large scale. We identify one cause of this gap in the decoupling of checking tools from
the everyday development tools. To radically change the situation, we explore the
integration of simple user-defined checks into the core of every development process:
the compiler. The checks we implement express constrained reachability queries in
the control flow graph taking the form “from x to y avoiding z”, where x, y, and
z are native code patterns containing a blend of syntactic, semantic and dataflow
information. Compiler integration enables continuous checking throughout devel-
opment, but also a pervasive propagation of checking technology. This integration
poses some interesting challenges, including tight bounds on the acceptable overhead,
but in turn opens up new perspectives. Factorizing analyses between checking and
compiling improves both the efficiency and the expressiveness of the checks.

Minimalist user properties and language-independent code pattern matching en-
sure that our approach can be easily integrated in any compiler for any language. We
illustrate this approach with a full-fledged checking compiler for C. We demonstrate
the need for permanent checking by partially analyzing two different releases of the
Linux kernel.

Keywords: extensible compilers, user-defined checks

1. Introduction

Checking programs with respect to user-specified properties is an im-
portant aspect of automated software engineering. Recent years have
seen many advances in software checking materialized in the apparition
of many different checking tools performing various levels of checks,
ranging from purely syntax checks [7, 31, 1, 22, 13, 11], going through
lightweight model checking [20, 30, 10, 14, 3, 8, 26, 21] up to sound
software model checking [12, 4, 23]. Despite this apparently very en-
couraging trend, the use of these tools in everyday software practice is
still marginal. Face to this situation, a legitimate question is: why?

There are several possible reasons of this discrepancy, among which:

− efficiency: most of the tools are not fast enough for everyday use.
This is especially the case for more formal verifiers.

− usability: the learning curve might be too steep for some tools;
some other tools are not sufficiently easy to use even for trained
users

c© 2007 Kluwer Academic Publishers. Printed in the Netherlands.

asej.tex; 27/11/2007; 21:37; p.1

2

− integration: most of these tools are not integrated with familiar
development tools

As a consequence of these and maybe other reasons, checking tools
are not used at all in most software projects. At best, checking is
performed sporadically. However, occasional checking has two major
shortcomings. Firstly, errors are not instantly caught, meaning that
they may be found in later stages when fixing them is more expensive.
Secondly, errors that were fixed in some phases of the project may be
re-introduced later on.

This paper explores a pragmatic approach to code checking aiming
to incorporate some minimal amount of checking throughout the devel-
opment process. Our approach to permanent checking is based on ex-
tending the central tool of the development process, the compiler, with
user-defined properties that are checked in addition to compilation.

Achieving integration of user-defined checks within a compiler re-
quires a new balance between power and precision on one hand versus
speed and usability on the other hand. We propose here to favor speed
and usability based on a minimalist class of user-defined properties,
trivial to define by any programmer and checkable very efficiently,
yet covering many well-known checks on systems code. The checks we
propose are simply expressed as reachability queries in the control flow
graph, constrained by syntactic, semantic, and dataflow information.

Our approach aims specifically to be easy to integrate in exist-
ing compilers, in order to allow a really widespread use of checking
technology by every programmer. To achieve this portability goal, we
use a language-independent pattern matching technique that can be
implemented very concisely in virtually any compiler.

We practically demonstrate our approach by presenting a full-fledged
checking compiler prototype built as a customizable version of the
popular gcc compiler, and called mygcc. This prototype checks and
compiles full C while adding only about 1000 lines of C source code
to the gcc compiler. First performance measures indicate that the
overhead of checking does not exceed compilation time even on rather
complex checks, and may be as small as 15% for basic checks. Thus, it
now becomes possible to perform checking at every compilation.

As a price to pay for this efficient execution, our checking tool is nei-
ther sound nor complete, as opposed to full model checkers. Neverthe-
less, it aims at significantly helping developers by constantly pointing
them many likely bugs. Sources of incompleteness include its inability
to detect inter-procedural bugs and the overlooking of alias information.
Sources of unsoundness include the overlooking of most (but not all)
dataflow information, which means that some false positives may be

asej.tex; 27/11/2007; 21:37; p.2

3

reported that correspond to unexecutable paths. It is important to
note that none of these limitations of the tool constitute fundamental
limitation of our compiler-integrated approach, nor of our checking
language. For instance, alias information already computed by the
compiler might be taken into account without changing the checks,
and probably without significantly slowing down the checking. One of
the main goals of this paper is to encourage compiler developers to
experiment with more powerful analyses that might be efficient enough
to do at every compilation.

Notwithstanding the limitations of our concrete implementation,
we were able to estimate the potential benefits of compiler-integrated
checking on the maintenance of a significant code base — part of
the Linux kernel. This experiment shows that some limitations of the
sporadic checking approach can be overcome using permanent checking.

The main contributions of this paper can be summarized as follows:

− we present an approach to closely integrate checking and compil-
ing, and we illustrate it with a full-fledged compiler (mygcc) able
to check user-defined properties in addition to usual compilation;
based on this integration, we introduce the concept of permanent
code checking during the whole development process

− we present the Condate declarative language for expressing simple
user-defined checks integrating in a very concise form syntactic,
semantic, control flow, and data flow information

− we validate the expressiveness, the precision, and the efficiency of
Condate and mygcc by applying them to successfully check some
part of the Linux kernel.

The rest of this paper is organized as follows. Section 2 presents
the approach of compiler-integrated checking. Section 3 discusses the
design principles of the Condate language, then defines its syntax and
semantics. Section 4 describes how condates can be checked efficiently.
Section 5 discusses further implementation issues on a real case. Sec-
tion 6 presents the permanent checking approach enabled by compiler-
integrated checking, and experimentally demonstrate its usefulness.
Section 7 discusses related work, and Section 8 concludes.

2. Compiler-integrated checking

Existing tools for user-defined program checking use various approaches,
but share a common, apparently minor design choice: they are special-
ized tools, doing only program checking. There are several important
consequences of this design:

asej.tex; 27/11/2007; 21:37; p.3

4

− most of the tools are completely decoupled from existing develop-
ment environments

− they duplicate a considerable amount of work on program parsing
and analysis; this is true even for tools that achieve a superficial
level of integration by being called automatically from existing
IDEs or makefiles

− they afford to perform costly analyses, which make them unsuit-
able for daily use throughout development; at best, existing tools
aim only at scalable analyses

− last but not least, the vast majority of programmers completely
ignore their existence.

We propose to explore the challenge of integrating user-defined checks
into the tool which constitutes the core of every development process:
the compiler. The goal is not just to build one experimental checking
compiler, but to define a methodology to integrate user checking into
any existing compiler.

This design decision solves the above problems, and should allow a
really widespread use of program checking, in order to deliver a small
yet useful part of present checking technology to every programmer.

However, this design decision is indeed a challenge to put into prac-
tice, because it imposes a number of severe constraints on the imple-
mentation:

− checking should be really fast, which means not only scalable, but
comparable to compilation time

− the interface should be smoothly integrated into the compiler in-
terface, and trivial to use; ideally, the user should express many
useful checks using only a few compiler options

− the implementation should not contain overly complex tools such
as theorem provers, expression simplifiers, or language interpreters,
so that compiler implementers could practically accept it.

In order to fulfill the above constraints, the present approach chooses
a new balance between checking power and precision on one hand,
versus speed and usability on the other hand. This new balance is
achieved by a minimalist interface consisting of constrained reachability
queries, able to express a small class of user properties, checkable in
linear time, but covering nevertheless many useful checks.

Furthermore, to ensure widespread adoption of the methodology
into any compiler, the implementation should be easily ported to any

asej.tex; 27/11/2007; 21:37; p.4

5

language without the need to develop complex language-specific front-
ends; ideally, the whole implementation should be completely language
independent. These language-independence is achieved by a minimalist
implementation of pattern matching, using unparsed patterns.

2.1. Unparsed patterns

Traditionally, source code pattern matching has been reduced to tree
matching, following two different approaches.

According to the first approach, patterns are expressed directly as
ASTs (abstract syntax trees) [22, 31, 8], so that any algorithm for
tree matching can be used to match them with the program AST.
This approach is simple to implement, but writing patterns in AST
form requires the user to be aware of both the AST representation of
programs and a specific textual notation for it.

According to the second approach, patterns are expressed directly
in the concrete syntax of the programing language extended to con-
tain pattern variables (also called meta-variables to distinguish them
from the variables of the underlying programming language) [14, 3, 23].
Writing patterns in concrete syntax is trivial for any programmer, but
this approach is difficult to implement, because it requires to build a
pattern parser, implementing an extended version of the programming
language’s grammar. Extending the grammar of a real programming
language to allow for pattern variables is a difficult task, because it
requires adding many new productions both to allow meta-variables
in different places and to allow parsing of incomplete programs. These
new productions usually introduce many conflicts in LALR grammars,
which may be tedious to solve. As an alternative to solving the conflicts
in LALR grammars, one may use GLR parsing or other variants of
backtrack-based parsing. However, both parsing techniques are much
less efficient that LALR parsing when the number of conflicts is sig-
nificant (which is the case for code patterns). As a result, pattern
parsers using either parsing technique usually implement a limited
pattern grammar, allowing meta-variables to occur only in certain po-
sitions, and also restricting the kind of program fragments that may be
matched.

Thus, abstract syntax patterns are easy to implement but difficult
to use, while concrete syntax patterns are easy to use but difficult
to implement efficiently. To solve this apparent contradiction without
sacrificing any of the terms, we designed a new technique of pattern
matching based on unparsed patterns.

Unparsed patterns are unrestricted program fragments written in
the concrete syntax of a programming language where meta-variables

asej.tex; 27/11/2007; 21:37; p.5

6

may replace any construct that is represented as a subtree in the AST.
However, unparsed patterns can be matched with ASTs without being
parsed [37]. The key insight behind unparsed pattern matching is that
when matching a program AST with a pattern represented as a string,
there is enough structure information in the AST so that the pattern
needs not be parsed. In fact, the pattern matching algorithm works by
unparsing the AST to compare it with the pattern, rather than parsing
the pattern.

In our notation, unparsed patterns are represented as quoted strings,
in which pattern variables are preceded by an escape character. In C,
the escape character used in the rest of this paper is “%”, in order to
adhere to the familiar convention used for C “format strings”.

For example, “buf = malloc(sizeof(int));”, “%X = malloc(%Y);”,
“%L = %L->next;” are unparsed patterns representing C statements,
and “%X = malloc(%Y)” (without the ending semicolon), “%X >=

threshold”, and “p == NULL” are unparsed patterns representing C
expressions.

Note that there is no distinction at the formal level between state-
ment patterns and expression patterns. It just happens that some
patterns may match only statements, while some other may only match
expressions.

An unparsed pattern matches a source code fragment c if there is a
substitution mapping variables to subtrees in the AST of c that makes
the pattern equal to c. (We also say sometimes that c matches the
pattern.) This implies that the same variable occurring several times
in a pattern must stand for an equivalent subtree. For cases where the
value of the variable is not important, there is an anonymous variable,
noted “% ”, that is always free.

For instance, the pattern “%L = %L->next;” matches the statement
“list = list->next;” under the substitution {l → list}, but it does not
match the statement “p = buf[0]->next;”. In turn, this last fragment
is matched by the pattern “% = % ->next;”.

It may be useful to consider that a pattern matches a code fragment
if it matches any subtree of the fragment, as opposed to considering
only “exact” matches. In this case, the pattern “%X = malloc(%Y)”
would match both C expressions and C statements containing such
expressions. We choose to adopt this convention in the rest of this
paper.

By avoiding to implement a pattern parser, unparsed pattern match-
ing is completely language-independent, except the part that unparses
an AST. Unparsers for any language can be generated automatically
based on the grammar of the language. Moreover, most compiler al-

asej.tex; 27/11/2007; 21:37; p.6

7

ready include an unparser for debugging purposes. As a result, unparsed
pattern matching can be easily implemented in any compiler.

Based on unparsed patterns, we can define our language for user-
defined checks, called Condate.

3. The Condate language

Before giving the precise definition of the Condate language, this sec-
tion starts by informally describing its main design principles.

3.1. Design principles

Condate is a minimalist declarative language for expressing user-defined
code checks. The name of the Condate language (meaning “confluence”
in Latin) refers to the confluence between compilers and checkers that
it is prototyping. It also stands as a contraction of “control” and “data”
because user-defined properties integrate these and other levels of pro-
grams properties, described in the following. Therefore, we sometime
refer to these properties as “condates”.

3.1.1. The syntax level
By allowing meta-variables to stand for any subtree in the AST, un-
parsed patterns provide a powerful tool to express syntax information
in user-defined properties. This is already sufficient to define a large
class of properties related to code inspection. To go beyond that, we
need to integrate control-flow information in our interface.

3.1.2. The control flow level
It is well known that many dataflow analyses and program checks can
be expressed as reachability queries over an “exploded program graph”
[32], which is the product of the program CFG and another graph (a
value-flow graph, or an automaton, for instance).

Integrating control-flow in our minimalist interface is based on the
observation that many sequencing properties that were successfully
used in the literature to find bugs in real code can be expressed as one or
several instances of reachability queries directly on the program CFG.
This form of reachability problems, that may be called “constrained
reachability queries” have the form: ‘Is there a path from a statement f

to a statement t avoiding statements v?’, where f , t, and v are unparsed
patterns.

For example, looking for memory leaks can be expressed as ‘Is
there a path from a “malloc(%X)” statement to the exit node avoiding

asej.tex; 27/11/2007; 21:37; p.7

8

statements “free(%X)”?’. Similarly, many other common checks may
be expressed as constrained reachability queries. For instance:

− reading a closed file: from “close(%F)” to “read(%F,%)” avoid
“%F=open(% ,%)”

− double lock: from “lock(%X)” to “lock(%X)” avoid “unlock(%X)”

− blocking operation with interrupts disabled: from “disable interrupts()”
to “blocking function()” avoid “enable interrupts()”

3.1.3. The data flow level
Using reachability in the CFG and unparsed patterns, an unexpected
number of useful checks can be encoded. However, the properties thus
defined lack any information on the values of program variables.

As a concrete example of this limitation, consider a check for po-
tential null dereferences of dynamically allocated pointers. This check
can in principle be expressed as a reachability query: ‘Is there a path
from “%X=malloc()” to “*%X” avoiding “if(%X!=0)”?’. However, as
it is written, the reachability query ignores the outcome of the test,
while in fact, paths going through the “else” branch could still contain
potential null dereferences.

In order to take into account the result of the test, the query should
avoid only successful tests matching the pattern “%X!=0”. That is,
the query has to be written more precisely as: ‘from “%X=malloc()”
to “*%X” avoiding successful tests “%X!=0” and unsuccessful tests
“%X==0”’. This way, dataflow information can be integrated very
naturally in our minimalist language.

Other dataflow information can be transparently integrated in our
language. For instance, after binding variable x in the “from” pat-
tern above (“%X=malloc()”) to an expression, when recognizing the
“to” pattern (“*%X”), the matcher can verify if the new expression
is not only syntactically identical to the bound one, but also that
the (program) variables it contains have not changed. For this, the
matcher can use existing reaching definition information computed by
a previous pass of the compiler (which indirectly takes into account
other dataflow analyses such as pointer information) to verify that the
reaching definitions of all these program variables are the same in the
“from” and “to” expressions. This idea can be further extended, for
instance by allowing the matcher to recognize an expression for x that
is textually different to the bound one, but having the same meaning
using aliases.

asej.tex; 27/11/2007; 21:37; p.8

9

3.1.4. The semantics level
Taking advantage of the compiler-integrated approach, semantic infor-
mation can be easily added by complementing patterns with calls to
executable predicates internal to the compiler. For instance, a pattern
such as the following one could match statements that allocate not
enough space for the destination variable:

“%X=malloc(%Y)” | TREE INT CST(Y) &&

!INT CST LT(Y,size(TYPE POINTER TO(X)))

where TREE INT CST, INT CST LT, and TYPE POINTER TO are macros in
the compiler testing whether an AST represents an integer constant,
respectively whether the value of such an integer constant is less than
a given value, and returning the pointer type for a given node1.

3.2. Condate Syntax

Putting all the previous pieces together, the grammar of the minimalist
Condate language, in BNF form, is as follows:

S → from D [to D [avoid D]] (1)

D → E | E or E (2)

E → P | +P | −P (3)

P → "(%V | lit)∗" [|expr] (4)

In the above rules, S is the start symbol, D represents a disjunc-
tive pattern, E an edge pattern, P an unparsed pattern, V a pattern
variable, lit a literal code fragment, and expr an expression executable
within the compiler. Note that in the last production, the first vertical
bar denotes alternatives in the grammar, while the second vertical bar
is part of the Condate language, read as “such that” and used to add
an optional semantic constraint as shown in section 3.1.4.

As can be seen in the grammar, some patterns can be omitted in a
condate, to express plain reachability or even purely syntactic queries:

− integer division: [is there a path] from “int %X;” to “%X/% ”?
The “avoid” patterns missing altogether, we have a pure (or un-
constrained) reachability query.

− undefined side-effect constructs: [is there a path] from “%X[%I++]
= %Y[%I++]” [to anywhere]? As the “to” patterns is missing,
this represents a purely syntactic query looking for statements
matching the pattern.

1 These exact macros exist in gcc, for instance.

asej.tex; 27/11/2007; 21:37; p.9

10

Thus, positive patterns such as the “to” pattern default to the “% ”
pattern matching anything, while negative patterns such as the “avoid”
pattern default to “”, the empty pattern matching nothing. The “from”
pattern cannot be omitted.

This minimalist language has the following advantages:

− a large number of useful checks can be expressed

− checks are encoded very compactly, grouping together syntactic,
semantic, control flow and data flow information

− checks are expressed very naturally from a programmer point of
view

− user properties written as condates can be checked in linear time
and space, as shown in section 4.

3.3. Condate semantics

The semantics of condates can be formalized as a particular class of
regular expressions ranging over paths in the CFG. In principle, we
could consider both intra-procedural and inter-procedural paths with-
out changing the syntax of the Condate language. However, exploring
inter-procedural paths may be considerably less efficient, and we could
not yet prove experimentally that this would lead to an acceptable
overhead compared to compilation times. For this reason, we will limit
ourselves in what follows to the CFG of a single function. Extension to
an inter-procedural setting should be possible to achieve by implement-
ing graph reachability in a global CFG using for example the standard
method of context-free language reachability [32], but this is beyond
the scope of this paper.

In order to define the particular class of regular expressions that
constitute the meaning of condates, we first have to define what regular
expressions are. Let a CFG be a graph consisting of a set of nodes and a
set of edges representing control flow transitions between nodes. There
are two types of nodes in the CFG:

− Action nodes, labeled with program statements that do not con-
tain internal control flow. There is always a single unlabeled edge
flowing out of an action node.

− Decision nodes, labeled with expressions in the program used to
decide on control flow. There are exactly two outgoing edges, one
is labeled with “+” and corresponding to a successful test and the
other labeled with “−”.

asej.tex; 27/11/2007; 21:37; p.10

11

Additionally, there is an EXIT node, with no outgoing edge.
We say that a CFG node matches an unparsed pattern if the state-

ment or expression labeling the node matches the pattern.
Edge patterns are defined as follows:

− (unconstrained) an unparsed pattern p is an edge pattern matching
any edge leaving any node matched by p

− (successful) if p is an unparsed pattern, +p is an edge pattern
matching the edges labeled “+” leaving any node matched by p

− (unsuccessful) if p is an unparsed pattern, −p is an edge pattern
matching the edge labeled “−” leaving any node matched by p.

For example, “%X = malloc(%Y)”, +“%P != NULL”, and −“%X
> val” are edge patterns.

A regular path expression over CFG is a regular expression over
an alphabet consisting of edge patterns. Regular expressions are recur-
sively defined as:

− (atomic) if e is an edge expression, e is a regular path expression
matching any edge matched by e

− (disjunction) if e1, ... en are edge patterns, [e1...en] is a regular
path expression matching any edge matched by any of the edge
patterns

− (complement) if e1, ... en are edge patterns, [^e1...en] is a regular
path expression matching any edge that is not matched by any of
the edge patterns

− (repetition) if r is a regular path expression, r∗ is a regular path
expression matching any path in the CFG that concatenates paths
matched by r

− (concatenation) if r1 and r2 are regular path expressions, r1r2 is
a regular path expression matching any path in the CFG that
concatenates two paths matched by r1 and r2, in this order.

For example, if a and b are unparsed patterns, a∗b[^ab]∗b is a regular
path expression.

By the above definitions, a regular path expression matches a path in
the CFG if there is a substitution that makes the edge patterns match
all edges in the path. This means that unparsed patterns occurring in
a regular path expression may share variables, and one such variable
stands for equivalent expressions everywhere.

asej.tex; 27/11/2007; 21:37; p.11

12

Figure 1. Automaton equivalent to the condate ‘from f to t avoid v or +vt or −ve’.

Based on these definitions, we can now define the semantics of a
condate as a regular path expression. A condate of the form ‘from f

to t avoid v or +vt or −ve’ corresponds to the regular path expression
f [^v + vt − ve]

∗t. The automaton equivalent to a condate is shown in
Figure 1, and has a fixed size. We already saw that in spite of this
limitation, many useful properties can be expressed.

To ensure an efficient checking of condates, we furthermore impose
the restriction that all pattern variables occurring in a condate must
be instantiated in the pattern f that recognizes “from” statements,
which must be a positive pattern. This not only guarantees that pattern
variables are always instantiated in a positive pattern, but also that any
substitution instantiating a regular path expression to some path in the
CFG is a substitution instantiating its first edge. Each such substitution
that instantiates the f pattern to “from” statements in the program is
called an instance of the condate.

This restriction does not seem to be a severe limitation in practice,
because variable instantiated in negative patterns usually count for
“don’t cares”, which are supported in condates through the anonymous
variable “% ”. Also, we believe that this restriction makes queries easier
to write and understand, because users naturally tend to think in terms
of problem instances: for any variable x there is a memory leak if P (x);
given two locks x and y there is a contention between them if P (x, y);
etc.

4. Checking condates

Condates can be checked by the following algorithm, which takes a CFG
and a condate = 〈from, to, avoid〉 consisting of a triple of (possibly
disjunctive) patterns:

proc check(CFG, from, to, avoid)
substs← ∅ // collect condate instances
foreach node t ∈ CFG do

asej.tex; 27/11/2007; 21:37; p.12

13

global store← ∅ // empty substitution
if match(t, from) // instantiating global store

then substs← substs ∪ {global store}
fi

end
for subst ∈ substs do // check one condate instance

global store← subst // instantiate variables
list← []
foreach node t ∈ CFG do

// put “from” nodes of the instance on the list
if match(t, from) then list← [t | list] fi

end
// traverse instantiated CFG
while list = [t | rest] do

list← rest

if ¬visited(t)
then visited(t)← true

if match(t, to)
then print “reached t”
else foreach edge e = t→ t′ do

if ¬match(e, avoid)
then list← [t′ | list]

fi
end

fi // match(t, to)
fi // ¬visited(t)

end // while
end // for

end // proc

In a first traversal, the algorithm scans all the program for “from”
statements, and collects the number of different substitutions associ-
ated to them. The global variable called global store contains a map-
ping of meta-variables to their current values (subtrees of the program
AST). By initializing this mapping to the empty substitution, all meta-
variables are reset to free (or unbound). Function match() takes into
account the values of meta-variables in global store, and upon success-
ful match, may side-effect global store by further instantiating other
meta-variables. This way, global store serves to pass meta-variable val-
ues between matches along the CFG traversal. To compute the set of
all instances of a condate, a set of global stores is used, called substs.
Each instantiation of the “from” pattern may add a new substitution
to this set.

asej.tex; 27/11/2007; 21:37; p.13

14

Each substitution collected in this set, representing an instance of
the condate, is then checked in two subsequent passes. The first pass
over an instance collects the “from” nodes of this instance. These con-
stitute the initial worklist for the second pass over an instance, which
traverses the (correspondingly instantiated) CFG from “from” nodes to
“to” nodes using only edges not matching the “avoid” pattern. For any
“to” node that is reached, there exists a path matching the condate, so
this is signaled to the user.

As unparsed pattern matching works in linear time [37], a condate
instance is checkable in time O(| CFG | ×(pvars + labelsize)), where
pvars is the number of pattern variables, and labelsize is the size of
the statements in the program. Considering that the number of meta-
variables is a constant in practice (frequently 2 or 3), the only super-
linear factor comes from labelsize. Section 5.6 will show how this factor
can be improved.

The space used by the algorithm is of only one bit per CFG node, to
recognize already visited nodes, plus variable global store containing a
pointer for each pattern variable. In addition, during the first traversal
of the algorithm, a set of global stores is needed; the maximum size of
this set is the number of condate instances.

5. Implementation

We implemented the approach described in the previous section in
a prototype called mygcc. During this process, we encountered some
interesting challenges, described below.

Mygcc was built by integrating into the open-source gcc compiler the
above intra-procedural checking algorithm, and the Condate language
with the following restrictions:

− pattern matching takes into account only dataflow information
resulting from matching positive and negative “to” patterns; reach-
ing definitions are only taken into account for temporary variables,
as described in section 5.5; all other dataflow information such as
aliases is currently ignored;

− user-defined patterns cannot currently specify semantic informa-
tion (the “such-that” part).

Mygcc is not just a checker, it is a fully functional gcc version
that performs checking as an additional compiler pass. In terms of
user interface, Mygcc just adds a new gcc flag “–tree-checks=file” to
specify a file containing condates to be checked while compiling the
given programs.

asej.tex; 27/11/2007; 21:37; p.14

15

Due to our minimalist approach, mygcc implementation consists of
only about 250 lines of modifications to existing gcc code, plus about
1000 lines of added C code, among which 600 lines implement the
pattern matcher and 400 lines implement the checking engine. Mygcc
is freely available [29], and we are currently working with the gcc de-
velopment team to incorporate the corresponding source changes into
an upcoming gcc release.

5.1. Why gcc?

To demonstrate that the compiler-integrated approach can be easily in-
corporated into any existing compiler, we eliminated from the start the
idea of using a research-oriented open compiler that would have eased
the task by already providing some infrastructure for extensibility and
cutting-edge program analyses. As opposed to this open architecture,
gcc was not meant to be extensible with user checks, and implements
rather well-established analyses.

Other important advantages of choosing gcc are its large user base
and its multiple language frond-ends for C, C++, Java, etc. By choosing
gcc, we also aim at proving that user-defined checks can be adopted for
different programming languages.

5.2. Choosing the intermediate representation

The first implementation choice that we faced was that gcc has no less
than four internal representations of the code. First, there are language-
specific ASTs in the front-ends (C, C++, Java...). Second, these ASTs
are translated by each front-end to a language-independent tree repre-
sentation called GENERIC. Third, GENERIC trees are simplified to a
subset of GENERIC called GIMPLE [28], that keeps some high-level
information about the code (lexical scopes, control constructs such as
if-then-else) but factorizes most of the syntactic variations (e.g., loops
are translated into gotos). Fourth, GIMPLE is translated to a register
transfer language called RTL.

Given the high-level patterns specified in user properties, the easiest
choice would have been to implement checking on the first representa-
tion: language-dependent ASTs.

We chose not to do so, primarily because we aimed at a tight integra-
tion between checking and compiler analyses and transformations. Or,
in order to factorize analysis code between different front-ends, most of
the high-level analyses (building of the CFG, aliases, use-defs) and high-
level optimizations (tail recursion elimination, constant propagation,
strength reduction, etc) are performed on GIMPLE. Therefore, to take

asej.tex; 27/11/2007; 21:37; p.15

16

the best advantage of being inside the compiler, we chose to implement
checking on the GIMPLE representation.

A second reason for choosing GIMPLE is that various C forms of a
statement are factored into a single GIMPLE form. For instance, both
C statements “i = i + 1;” and “i++;” are reduced in GIMPLE to the
form “i = i + 1;”, so both can be matched by the user pattern “%x =
%x + 1”.

Finally, a third, very important advantage of choosing GIMPLE is
that checking can then be used on any language parsed by gcc’s front-
ends. Indeed, mygcc was initially tested only on C code, as reported in
[36]. Since that publication, we also included the C++ and Ada front-
ends in the mygcc distribution. After just re-compiling the package,
C++ and Ada pattern matching became possible by the combination
of our language-independent matching algorithm with the language-
dependent unparsers provided by the different front-ends. Of course,
user patterns have to be written as they are unparsed by gcc. For
instance, a C++ assignment of the form “% = %X[%Y]” in which the
indexing operator has been redefined is dumped by gcc from GIMPLE
form as “% = operator[](%X,%Y)”, so the user pattern has to be
written in this latter form, rather in the former.

Thus, choosing to perform user-defined checks on GIMPLE: allows
for a closer integration with the compiler, factors some syntactic vari-
ations in user patterns, and enables multi-language checks. However,
choosing GIMPLE significantly augments the complexity of matching
high-level user patterns with de-sugared code.

A first slight complication is that the GIMPLE representation intro-
duces many explicit casts not present in the source. We easily adapted
pattern matching so as to ignore any casts in the AST. One consequence
of this is that user patterns must not include any explicit casting.

5.3. Dealing with temporaries

The main difficulty when matching user-level patterns with GIMPLE
code concerns the fact that expressions are broken down in GIMPLE
to a three-address form, using temporary variables to store intermedi-
ate values. We had to adapt the pattern matching mechanism such
that when encountering a temporary variable in the matched code
to conceptually inline its definition before continuing the matching
process.

Let us illustrate this method by the following code fragment, to be
checked for unreleased locks ‘from “lock(%X,%Y)” to “return” avoid
“unlock(%X,%Y)”’:

lock(step[i+1], NOWAIT);

asej.tex; 27/11/2007; 21:37; p.16

17

critical_section(...);

unlock(step[i+1], NOWAIT);

return;

In GIMPLE, the same code may look as follows:

T.2 = i + 1;

T.3 = step[T.2];

lock (T.3, 0);

critical_section(...);

T.4 = i + 1;

T.5 = step[T.4];

unlock (T.5, 0);

return;

Matching the “from” pattern “lock(%X,%Y)” with the statement
“lock(T.3, 0)” bounds the pattern variable x to the temporary variable
“T.3”, so then the “to” pattern “unlock(%X,%Y)” will not match the
statement “unlock(T.5, 0)”, because “T.5” is a different variable than
“T.3”. Therefore, a checking algorithm not taking into account tem-
porary variables does not recognize the correct unlock statement, so
erroneously reports that the lock is not released before the return.

This problem can be solved by observing that it is possible to recon-
stitute the syntax in the original program. Indeed, in the GIMPLE form
before optimizations, each syntactically complex expression (containing
no internal control flow) is broken down into a block of straight-line
code where each use of a temporary corresponds to a definition in the
same block. Of course, there may be several subsequent uses for a same
definition. Note that this local definition property is not specific to
GIMPLE, but is rather typical for how compiler introduce temporary
variables, before optimization passes. The original expression can then
be reconstituted by inlining temporaries, that is, by substituting ev-
ery temporary variable with its corresponding definition above in the
block. This inlining can be integrated in the matching algorithm, by
systematically considering the definition of a temporary instead of the
temporary itself.

5.4. Matching lvalues

However, inlining temporaries does not solve by itself the whole prob-
lem of matching high-level patterns with simplified code. Consider the
following code fragment, which represents a downsized version of a real
bug in the Linux kernel:

ps->t->table = malloc(sizeof(pixmap));

asej.tex; 27/11/2007; 21:37; p.17

18

memcpy(ps->t->table,

pixmap, sizeof(pixmap));

This fragment contains a possible null pointer dereference: the al-
located pointer expression “ps->t->table” is passed unchecked to the
memcpy function that uses this pointer as the destination of a copy.
However, when the checking algorithm is performed on the GIMPLE
form to verify the condate ‘from “%X = malloc()” to “memcpy(%X, ,)”
avoid (“%X= ” or +“%X!=0” or −“%X==0”)’, the code fragment has
been rewritten as follows:

1. D.2208 = ps->t;

2. D.2209 = malloc (40);

3. D.2210 = (char *) D.2209;

4. D.2208->table = D.2210;

5. D.2208 = ps->t;

6. D.2211 = D.2208->table;

7. memcpy (D.2211, &pixmap, 40);

In the above GIMPLE form, the destination of the malloc() call is a
temporary variable (D.2209) that does not occur at all in the memcpy()
call, even when inlining the definition of temporary D.2211.

In fact, the pointer expression “ps->t->table” that was shared in the
original program between the calls to malloc() and memcpy() can be
found as the LHS of line 4. It is precisely this expression that should be
caught by the pattern variable x, rather than the temporary D.2209.

The key observation here is that a GIMPLE temporary definition
never represents a definition in the original program, but always repre-
sents a use in the original program. Definitions in the original program
are always translated in GIMPLE as assignments to a non-temporary.
Thus, by applying inlining of temporary uses to every statement that
is not a temporary definition, one can reconstitute all the statements in
the original program. In our example, the original assignment involving
malloc() can be reconstituted from the definition on line 4, the only
non-temporary definition.

Therefore, we adapted the matching algorithm to skip temporary
definitions when looking for user-defined statement patterns.

5.5. Binding context

There is another interaction between temporary variables and patterns,
which comes from the fact that temporary variables only have mean-
ing when associated with the statement where they occur. When a
meta-variable x in a “from” pattern is bound to a temporary, the

asej.tex; 27/11/2007; 21:37; p.18

19

binding should include not only the temporary, but also the context
statement where it was bound. Thus, when the bound meta-variable
x is subsequently used in a “to” or “avoid” pattern for matching an-
other statement, inlining the temporary bound to x must be done with
respect to its original reaching definition, and not with respect to the
current statement. To implement this mechanism, the global store was
extended to include for every pattern variable both its value and its
“binding context”, i.e., the program location where the bind occurred;
the pattern matcher was adapted to take into account this information
when inlining temporaries.

In principle, this binding context could be used by the matcher more
generally to access various kinds of flow-sensitive dataflow information
computed by previous analyses in the compiler, such as reaching defini-
tions for all variables (not only for temporary variables) flow-sensitive
alias information, etc. However, the use of such dataflow information
is not implemented in our current prototype.

5.6. On-demand temporary inlining

Interestingly, some inlining can be avoided if the intermediate repre-
sentation has been constructed using a form of global value numbering
(GVN) [33]. In such a representation, a given temporary variable rep-
resents always the same expression, or an equivalent one. Actually,
gcc does use such an algorithm for building the GIMPLE form, which
means that in reality the code fragment in section 5.3 really looks as
follows:

T.2 = i + 1;

T.3 = step[T.2];

lock (T.3, 0);

critical_section(...);

T.2 = i + 1;

T.3 = step[T.2];

unlock (T.3, 0);

return;

In this form, inlining of T.3 can be avoided by binding the pattern
variable x to “T.3” instead of to “step[i+1]”. Thus, inlining a temporary
can be avoided by binding a pattern variable that is shared between
two patterns to the temporary instead of to the expression it represents.
However, when the pattern portion that is matched with the temporary
is not a free variable, the temporary must be inlined to check that its
definition corresponds to the pattern. For example, if the above code
fragment is checked against the condate ‘from “lock(%X+1, %Y)” to

asej.tex; 27/11/2007; 21:37; p.19

20

“return” avoding “unlock(%X+1, %Y)”’, the definition of “T.3” has to
be recursively inlined to retrieve the ’+’ operator in the pattern.

Thus, this on-demand inlining is driven by the pattern, not by
the original statement, which means that its recursive application is
bounded by the size of the user pattern.

When eager inlining is used, the matching time is linear in the size of
the statements in the original program and in the size of user patterns.
When on-demand inlining is used, the matching time is linear in the
size of GIMPLE statements and in the size of user patterns. The size of
GIMPLE statements is constant, and the size of patterns is under user
control, and may be eventually bounded by a constant. Therefore, on-
demand inlining changes the complexity of the checking algorithm by
replacing the factor related to the size of program statements, labelsize,
with the size of the patterns, patternsize.

6. Experimental evaluation

The compiler-integrated approach, as implemented in mygcc, makes it
possible to perform permanent checking of a restricted class of user-
defined properties during all the development process. This technique
was not possible using previous checking tools.

In order to assess and validate both our class of user-defined checks
and more largely the compiler-integrated approach, we applied mygcc
to reproduce the detection of some previously reported bugs in the
Linux kernel [9]. That previous study applied 12 different user-defined
checkers written in Metal for the MC tool to detect over 500 bugs in
kernel version 2.4.1. All these bugs were manually inspected and/or
confirmed by kernel developers. A summary of the MC results is freely
accessible as an on-line database [27]. As MC is a basically intra-
procedural tool, this study proved that it is indeed worth to carefully
check intra-procedural properties in real system software. This also
meant that even our current implementation of mygcc could have a real
potential usefulness. However, checks in Metal are considerably more
powerful than condates — they are expressed as arbitrary automata
mixed with executable C code. Interestingly, MC was also developed
as an extensible version of gcc, but using the traditional design of a
standalone checker: it was only meant to do program checking, thus
loosing its initial compiler features.

Using this excellent and well-established testbed, our approach had
to be validated in several respects:

− test the expressiveness of condates by expressing a maximum num-
ber of checks

asej.tex; 27/11/2007; 21:37; p.20

21

− test the precision of condates with respect to MC by reproducing a
maximum number of bugs with the smallest possible number false
positives

− test the scalability and performance of mygcc on a large code base

− test the usefulness of permanent checking with respect to spo-
radic checking by finding practical evidence that it addresses some
limitations of the latter

6.1. Expressiveness

To assess the expressiveness of condates, we expressed as condates as
much as possible of the 12 MC checkers cited above. The results are
given in Table I.

As can be seen in the table, 11 checkers out of the 12 can be expressed
partially or completely in Condate, only two of them (SIZE and VAR)
using semantic patterns. A single checker (INULL) cannot be expressed
conveniently as a condate because it encodes complex checks about
pointer uses and their implied assumptions.

An interesting comment about the expressiveness of condates is that
this framework allows to optimize the checkers by factorizing similar
user properties in the same condate. For instance, many similar checks
written for the Linux kernel are different versions of the LOCK checker.
They all check for leaving a function with an active lock, but differ only
on the names of the functions used to lock (l1, l2, ..., lN) and unlock
(respectively: u1, u2, ..., uN). These similar checks can be grouped in
the following condate:

from “l1(%X)” or “l2(%X)” or ... “lN (%X)” to “return” avoid “u1(%X)”
or “u2(%X)” or ... “uN (%X)”.

This factorization trades some precision for speed, because it would
miss the bug in the code fragment: “l1(a); u2(a); return;”, where an
incorrect function (u2 instead of u1) is used to release the lock. In
practice, different lock functions are usually type-incompatible, so the
situation may never occur. Anyways, it is up to the user to evaluate if
such a factorization is safe or not.

6.2. Precision

To test the precision of mygcc with respect to MC, we chose one Metal
checker called “NULL” that checked possible null pointer dereferences
and reported 124 bugs in 89 source files in the kernel. We rewrote
this Metal checker in Condate, and we tried to reproduce as much as
possible of the bugs that were reported by it.

asej.tex; 27/11/2007; 21:37; p.21

22

Table I. Expressiveness comparison between Metal and Condate.

Checker Tool Specification

BLOCK MC To avoid deadlock, do not call blocking functions with

interrupts enabled or a spinlock held

mygcc from “lock()” to “blocking function()” avoid “unlock()”

NULL MC Check potentially null pointers returned from routines

mygcc from “%X=malloc(%)” to “*%X” or “%X->% ”

avoid +“%X != 0” or −“%X == 0”

VAR MC Do not allocate large stack variables (>1K) on the fixed-size kernel stack

mygcc “%T %X” | TYPE P(T) && TREE CODE(X)==VAR DECL &&

DECL SIZE(X)>1024

INULL MC Do not make inconsistent assumptions about whether a pointer is null

mygcc N/A

RANGE MC Check bounds of array indices derived from user data

mygcc from “copy from user(&%X, % , %)” to “malloc(%X)” or “% [%X]”

avoid “%X < % ” or “%X <= % ”

LOCK MC Release acquired locks

mygcc from “lock(%X)” to “return” avoid “unlock(%X)”

MC Do not double-acquire locks

mygcc from “lock(%X)” to “lock(%X)” avoid “unlock (%X)”

INTR MC Restore disabled interrupts

mygcc from “cli()” to “return” avoid “sti()”

FREE MC Do not use freed memory

mygcc from “free(%X)” to “*%X” or “%X->% ” avoid “%X=% ”

FLOAT MC Do not use floating point in the kernel

mygcc from “float %X” or “double %X”

REALLOC MC Do not lose a pointer if realloc fails and returns null

mygcc from “%X = realloc(%X)”

PARAM MC Do not dereference user pointers

mygcc from “copy from user(&%X, % , %)” to “*%X” or “%X->% ”

avoid +“%X != 0” or −“%X == 0”

SIZE MC Allocate enough memory to hold the destination type.

mygcc “%X = malloc(%Y)” | TREE INT CST(Y) &&

!INT CST LT(Y, size(TYPE POINTER TO(X)))

asej.tex; 27/11/2007; 21:37; p.22

23

These 89 source files also contained bugs reported by other Metal
checkers. We also rewrote two of these checkers in Condate and tried to
reproduce all the corresponding bugs in these 89 files. These two Metal
checkers were looking for uses of freed pointers (the “FREE” checker)
and calls to blocking functions with interrupts disabled or while holding
a spin lock (the “BLOCK” checker).

The three checkers rewritten in Condate (completely included in
Appendix A) are compact: 49 lines for NULL, 4 lines for FREE, and
16 lines for BLOCK. The NULL checker is the largest because we aimed
at reproducing all the bugs found by the Metal checker in the whole
kernel, so we had to include all the syntactic patterns it checked for.
For the other two checkers, we wanted to reproduce only the bugs in
the selected 96 files, so we could include only the particular patterns
that appeared in these files.

Within these 89 files, we successfully found 117 NULL bugs out of
the 121 found by MC. Only four NULL bugs were missed by mygcc,
in spite of its minimal interface and implementation. The FREE and
BLOCK checkers found a total of 13 bugs out of 13 reported by MC on
these files. Among the bugs found by both MC and mygcc, two were
diagnosed slightly differently. More surprisingly, in addition to the bugs
previously reported, mygcc found two new bugs.

6.2.1. Missed bugs
Two of the bugs missed by mygcc are of the same type, one in file
“namei.c”, function “udf add entry”, and another in file “upcall.c”,
function “coda upcall”. The latter for instance occurs in the following
code fragment:

CODA_ALLOC(sig_req, struct upc_req *,

sizeof (struct upc_req));

CODA_ALLOC((sig_req->uc_data), char *,

sizeof(struct coda_in_hdr));

sig_inputArgs = (union inputArgs *)sig_req->uc_data;

sig_inputArgs->ih.opcode = CODA_SIGNAL;

In this fragment, “CODA ALLOC(pointer, size)” is a macro that
allocates memory of the given size into the given pointer using function
“kmalloc()”, without checking the returned pointer against null. There
are two errors in this fragment. The first one, found by both MC and
mygcc is the dereference “sig req->uc data” on the third line, without
checking “sig req” for null. The second error, found by MC but not by
mygcc is the dereference “sig inputArgs->ih.opcode” on the last line,
without checking the pointer “sig inputArgs” for null. Mygcc does not
find the error because this pointer comes from the allocation in the

asej.tex; 27/11/2007; 21:37; p.23

24

second line but only indirectly through variable “sig req->uc data”.
Mygcc does not track equalities between different variables (other than
temporary inlining), so it misses this second error. As opposed to
this, MC finds the error because the user property is expressed as an
executable automaton that can carry values between different states.

Two other missed bugs are of a different type. They occur in file
“aironet4500 card.c”, for instance in function “awc4500 isa probe”, in
the following code:

if (!dev) {

dev = init_etherdev(dev, 0);

}

dev->priv = kmalloc(sizeof(struct awc_private),

(0x02 | 0x01 | 0x04));

In this code fragment, the pointer “dev” is allocated by function
“init etherdev()” and then dereferenced without being checked, which
is a bug. The problem seems trivial to detect at first sight, but the
subtlety comes from the semantics of the function “init etherdev()”,
which depending on the value of its first argument either initializes an
existing structure (if the argument is not null) or allocates memory (if
it is null). Only in the latter case the function may return a null pointer.
To avoid plenty of false positives, the “to” pattern had to be written
“%X=init etherdev(0, %)”. With this pattern, mygcc finds some real
bugs, in cases when an explicit null pointer is passed. However, in the
present example, the pointer is known to be null only because it has
just been tested. MC is able to deduce this information, but mygcc is
not.

6.2.2. False positives
With respect to MC, mygcc found only three additional false positives,
both in file “namei.c”, and both of the same type. For instance, one is
found in function “udf find entry”, which contains the following code
fragment:

if (!(fibh->sbh = fibh->ebh = udf_tread(...)))

{

udf_release_data(bh);

return NULL;

}

...

nameptr = (Uint8 *)(fibh->ebh->b_data + poffset

- lfi);

In the addition on the last line, the dereferenced pointer “fibh->ebh”
is guaranteed to be non-null, but the test against null on the first line

asej.tex; 27/11/2007; 21:37; p.24

25

is done on another variable, “fibh->sbh”. This is directly visible in the
GIMPLE form below. Again, as mygcc does not track variable equality,
it incorrectly signals the dereference on the last line as an error.

T.945 = udf_tread (T.916, block, T.944);

fibh->ebh = T.945;

T.946 = fibh->ebh;

fibh->sbh = T.946;

T.947 = fibh->sbh;

if (T.947 == 0B)

{

bh.943 = bh;

udf_release_data (bh.943);

return 0B;

}

...

T.946 = fibh->ebh;

T.959 = T.946->b_data;

On the same example, MC does not signal the false positive because the
user property automaton carries values between different user variables.

To circumvent mygcc’s false positive on this example, it is sufficient
to inverse the test on the first line from:

if (!(fibh->sbh = fibh->ebh = udf_tread(...)))

to:

if (!(fibh->ebh = fibh->sbh = udf_tread(...)))

This kind of turnaround is easy to find, and in fact is frequently used
by programmers to circumvent false warnings of traditional compilers,
e.g., false warnings about uninitialized variables.

Yet another kind of false positive was found in file “slram.c” in
function “init slram”:

mymtd->priv = (void *)kmalloc(sizeof(struct mypriv),

GFP_KERNEL);

if (!mymtd->priv)

{

kfree(mymtd);

mymtd = NULL;

}

memset(mymtd->priv, 0, sizeof(struct mypriv));

In this code fragment, the allocated pointer “mymtd->priv” is checked
for nullity, but even if it is null, the code runs into a dereference of it

asej.tex; 27/11/2007; 21:37; p.25

26

in the last line, signaled by mygcc. This is a false positive, because the
variable “mymtd” has been re-assigned in the mean time. Mygcc does
not currently verify whether variables occurring in a matched expres-
sion are being re-assigned. This should be fixed in a future version, by
treating such assignments as implicit “avoid” nodes.

In reality, there is another, undetected bug here, because when the
pointer “mymtd” is assigned to null, it is immediately de-referenced.
Our checker does not take into account explicit assignments of pointers
to null. This would be very easy to fix by adding the pattern “%X =
0” to the condate implementing the NULL checker. We do not know
why MC overlooked this bug, too.

6.2.3. Different diagnostics
For two bugs that were found by both MC and mygcc, there are some
differences in their diagnostics. The first difference concerns a bug in
file “inode.c”, in ‘function “bfs read super”:

inode = iget(s,i);

if (inode->u.bfs_i.i_dsk_ino == 0)

s->u.bfs_sb.si_freei++;

else {

set_bit(i, s->u.bfs_sb.si_imap);

s->u.bfs_sb.si_freeb -= inode->i_blocks; ... }

The bug is that pointer “inode” is allocated by function “iget” and
dereferenced with no check. MC correctly signals the errors on the
second line, when the pointer is dereferenced in the condition of the
if statement. Due to a limitation in its current implementation mygcc
searches “to” patterns only in elementary statements, so it overlooks
the condition of the “if”, and signals the error on the last line instead.
This limitation is easy to eliminate in a future release.

The second difference concerns a bug in file “sunhme.c” in function
“happy meal pci init”:

dev = init_etherdev(0, sizeof(struct happy_meal));

...

if (!strncmp(dev->name, "eth", 3)) ...

In this code fragment, pointer “dev” allocated by “init etherdev” ap-
pears to be dereferenced without being checked in the expression “dev->name”.
Indeed, MC signals the error at this precise point. As opposed to MC,
mygcc checks the following GIMPLE form:

T.2302 = init_etherdev (0B, 512);

dev = T.2302;

asej.tex; 27/11/2007; 21:37; p.26

27

...

dev.2309 = (char *)dev;

T.2310 = strncmp (dev.2309, "eth", 3);

In this GIMPLE form, there is no more dereference of pointer “dev”
before being passed to function “strncmp”! This is simply because the
field called “name” in the “dev” structure is the first field in this
structure, and is a character array. Therefore, to obtain the address
of “name”, GIMPLE simply casts the pointer as a string, and passes
it directly to “strncmp”. Indeed, the dereference “dev->name” in the
original code exists only in the concrete syntax, but does not correspond
to a real pointer dereference in the executed code. Hence, MC signals in
fact a false positive in this expression! However, passing a null pointer
to “strncmp” is an error anyways, which is caught by mygcc because
passing a pointer to “strncmp” has been declared in the condate as a
“to” pattern, like other dereferences.

6.2.4. New bugs
Mygcc also found two new bugs not previously reported by the MC
study.

The first new bug was found in file “anode.c” in function “hpfs add sec-
tor to btree”. The bug concerns a dereference of pointer “anode”, al-
located by function “hpfs map anode()”. The control path is too com-
plicated to detail here. It is possible that MC found this bug but that
it has not been validated by manual inspection.

The second new bug was found by mygcc in file “intrep.c” in function
“jffs scan flash”, where pointer “read buf” is dereferenced unchecked:

read_buf = (__u8 *) kmalloc (sizeof(__u8) * 4096,

GFP_KERNEL);

...

if(*((__u32 *) &read_buf[i]) !=

JFFS_EMPTY_BITMASK)

break;

Probably, MC overlooked this bug because its NULL checker did not
provide a pattern for such a complex syntax to dereference a pointer.
As opposed to MC, mygcc works on the GIMPLE form where the “if”
condition has been decomposed, so the dereference of the variable has
been rewritten in a more standard form:

i.1176 = (unsigned int)i;

i.1177 = (__u8 *)i.1176;

T.1178 = read_buf + i.1177;

T.1179 = (__u32 *)T.1178;

asej.tex; 27/11/2007; 21:37; p.27

28

T.1180 = *T.1179;

if (T.1180 != 0ffffffff)

{

goto <D11400>;

}

Using temporary inlining and cast skipping, mygcc recognizes on the
fifth line the form “*(read buf + %)” that has been declared in the
condate as a dereference.

6.3. Need for permanent checking

In order to estimate the usefulness of permanent checking, we verified
whether all the bugs reported by the MC study have been fixed in
a subsequent kernel version, v. 2.6.13, released in August 2005. The
results on kernel 2.4.1 were published in 2001 and Linux kernel devel-
opers were informed about the existing on-line database summarizing
the bugs. Therefore, this experiment covers a lapse of 4 years of active
maintenance of a significant code base.

When re-conducting the checks described in the previous subsection
on the new kernel version, mygcc found four surviving bugs:

− one previously reported bug (in file skfddi.c, function skfp driver init)
and one of the 4 new bugs mentioned above (in file anode.c, func-
tion hpfs add sector to btree) have survived identically (interest-
ingly, the other 3 new bugs have disappeared, even if MC did not
signal them); the containing functions have only slightly changed
in the mean time

− one bug (in file riotable.c, function RIOReMapPorts) remained un-
touched, in spite of the fact that this function has been significantly
changed for other reasons

− one bug (in file inode.c function bfs read super) survived in a differ-
ent form; the code has radically changed between the two versions:
the containing function does not exist anymore, but a code frag-
ment similar to the old bug can be found now in another function
(bfs fill super)

The fact that almost all the bugs were fixed in the new version
clearly shows that the MC report was taken very seriously into ac-
count by Linux kernel developers. The three previously reported bugs
that survived in spite of this intense correction effort demonstrate that
without a proper tool to enforce user properties, even well-known bugs

asej.tex; 27/11/2007; 21:37; p.28

29

Table II. Performance of mygcc.

File Checkers Time Overhead

(secs) (%)

inode.c none 0.291

NULL 0.503 72

all 0.506 74

comx-proto-fr.c none 0.626

FREE 0.715 14

NULL 0.929 48

all 0.989 58

iphase.c none 2.026

FREE 2.242 11

LOCK 2.309 14

NULL 3.644 80

all 4.013 98

all Linux files none 137

FREE 140 2

LOCK 140 2

NULL 171 24

can survive for long periods of time (four years in our case), or can be
re-introduced during maintenance.

6.4. Performance

The examples described in the Linux study illustrate the fact that
mygcc is able to check any program that gcc can compile. Thus, the
scalability of the prototype to real programs is clearly demonstrated.
But mygcc aims not just at being scalable to large programs, but also
to impose a reasonable overhead on compilation time.

We measured the overhead of different checkers when compiling
three programs that are part of the above Linux study: a program
featuring only NULL bugs, one with additional FREE bugs, and a
last one with the three types of bugs we checked for. The results are
summarized in Table II. The last line shows the total time for checking
all the 89 files part of the Linux kernel. The benchmarks were performed
on a Linux PC with an Athlon XP2800+ processor and 256MB of
memory.

asej.tex; 27/11/2007; 21:37; p.29

30

The checking overhead is directly related to the number of checkers
used, to the number of condate instances found in the program, and to
the size of the patterns. This explains the large variations between the
different measuring points. However, it can be seen that the checking
time never exceeds compilation time in these typical examples of the
Linux study. Overheads are of the order of 10-15% for a very simple
checker (FREE, containing a total of 6 patterns), 15% for a moderate
checker (LOCK, including 11 patterns), and 50-80% for a complex
checker (NULL, including a total of 51 patterns, among which 24 are
disjuncts of a single “from” pattern). The maximum overhead when
combining all the checkers is 98%. As can be seen from the last line, on
average, the overhead of a simple checker is of 0-2%, and the overhead
of all the combined three checkers is of 24%.

When interpreting the figures, it is important to note that we did not
have the time to optimize the implementation of the current prototype.
To give only one example, mygcc internally uses pattern matching to
decide whether a node is an assignment; while this self-application is
elegant, this check could be optimized by directly testing the AST node
label.

7. Related work

At the most basic level, every compiler routinely performs some fixed
checks on the program, such as detecting uninitialized variables, etc.
The novel proposal in this paper is to include user-defined checks in
compilers.

The most common approach to user-defined checking is to define a
programming model in which users may write their own program in-
spection passes. Tools implementing this approach incorporate a front-
end that parses the program in the form of an AST and offer either
an application programming interface (API) or a domain-specific pro-
gramming language (DSL) to walk the AST and implement different
forms of checks.

API-based code inspectors include SoftBench CodeAdvisor from HP,
in which user-defined checks have to be coded in C++, Checkstyle [7]
and FindBugs [19], with checks coded in Java. More recently, some
extensible code inspectors such as PMD [31] build an XML representa-
tion of the AST, on which user-defined checks can be expressed either
in JAVA, or in a declarative way using Xpath patterns. API-based
tools allow in theory to implement any user-defined checks. They offer
a solid basis to inspect syntax, but little or no semantic information is
pre-computed. None of these tools pre-compute the control-flow graph,

asej.tex; 27/11/2007; 21:37; p.30

31

therefore no dataflow information is available. For these reasons, API-
based code inspectors make it easy to define syntax checks such as
adherence to a coding standard, or computations based on syntax
traversal such as function call graphs or class hierarchy extraction.
In turn, writing any kind of non-local semantic checks such as verify-
ing sequences of operations or performing model checking requires an
important amount of code.

Tools defining a DSL to write code checkers include CodeCheck [1]
and tawk [22], defining an imperative languages close to C, Genoa [13]
defining a functional language close to Lisp, and ASTLOG [11], defining
a variant of the Prolog language. DSL-based tools can very compactly
encode sophisticated tree patterns or tree traversals, but none of the
cited DSLs integrate control or dataflow information in the language,
neither in explicit nor in implicit form.

Writing checkers for both API and DSL code inspectors requires the
user to be aware of the details of the AST representation for the subject
language, in addition to the API or DSL to traverse it.

Another set of program checkers such as Splint [15, 34] and CQUAL
[16] are based on extensible type checking. In this approach users must
annotate the types of the checked program with qualifiers expressing
program properties that can be checked automatically. Type-based
checkers are very efficient (e.g., linear-time) and precise (e.g., sound)
in verifying “global” properties in a program, i.e., that do not depend
on control flow. Some of these checks could definitely be integrated
in a compiler-integrated approach, but for now are implemented as
standalone tools. Some extensions were added to check flow-sensitive
types [20], but in this case the performance is no more suitable for
permanent checking.

Yet another class of extensible checkers transpose model checking
techniques, used since a long time in hardware verification, to programs,
viewed simply as CFGs, in which the semantics of individual program
statements is usually ignored. In this approach of lightweight model
checking, user-defined properties represent legal sequences of opera-
tions, and are represented by finite automata. Transitions are triggered
by syntactic patterns matching program statements. Checking is done
by conceptually executing the automata along the CFG. Lightweight
model checkers include Cesar [30] for checking Fortran and his evolution
called FLAVERS [10] for Ada and Java, MC [14] for C and its variant
MJ [3] for Java, MOPS [8] and CodeSurfer Path Inspector [21] for C,
PQL [26] and SAFE [17] for Java. Engler et al. clearly demonstrated
the practical usefulness of the lightweight model checking approach, by
applying MC to detect hundreds of system programming bugs [14] and
security bugs [2] in C code. The running time complexity of these tools

asej.tex; 27/11/2007; 21:37; p.31

32

has been precisely analyzed in the framework of parametric regular path
queries [25]. Essentially, the checking time depends on the size of the
user automaton. For simple automata, checking may be done in linear
time. Some tools such as SAFE allow to parameterize the precision
of complementary analyses such as alias analysis so as to obtain more
responsive checks for interactive use or more precise checks for use
in batch. This feature of SAFE allowed it to prototype a method of
continuous quality assurance, not integrated with the compiler, but
within the IDE. In comparison to automata-based tools, the checks
allowed by our tool are a particular case of lightweight model checks
where the automaton has a fixed form with only three states: the initial
state, the state after a “from” node, and the error state. One original
feature of our approach is allowing to define transitions that depend on
variable values, using “successful” and “unsuccessful” patterns. More
importantly, all cited tools are distinct from the compiler, and there-
fore duplicate a great amount of analysis work. Note also that our
unrestricted, language-independent pattern matching could be useful
in many of these tools.

More precise program checkers take into account variable values in
order to distinguish between feasible and unfeasible path. Among them,
SLAM [4], Blast [23], and ESP [12] also express user properties as
automata. The BLAST checking algorithm has been integrated within
an existing IDE as an Eclipse plug-in and optimized to work incre-
mentally, in order to support “Extreme model checking” [24], which
consists of performing user checks on each release of a program, during
software development. These tools integrate complex subsystems such
as symbolic executors, theorem provers and/or expression simplifiers,
that cannot reasonably be integrated within compilers. This means
that they are designed to remain standalone tools, used out of the
critical path in development. Our approach for permanent checking is
complementary to extreme model checking, as it chooses to perform
simpler checks but that can be integrated easily in every compiler and
re-done at every compilation.

Finally, full software model checkers, such as, for example Java
PathFinder [35], verify user-defined properties (possibly defined as au-
tomata) on non-deterministic programs (e.g. concurrent programs) by
trying to execute all possible sequences of non-deterministic choices.
The applicability of this approach is usually limited to medium-sized
systems because of the state space explosion problem. This remains
true even if existing tools achieve great savings by using complex search
heuristics, by reducing the number of states explored, and by reducing
the state storage cost.

asej.tex; 27/11/2007; 21:37; p.32

33

Condates are a variant of parametric regular path queries [25], with
the following modifications:

− we only allow existential queries, which can be solved more effi-
ciently than universally quantified queries

− edges on the CFG are directly labeled with program instructions,
instead of some abstractions thereof; this eliminates the need of a
specific front-end for each checker

− we allow to encode a minimal amount of dataflow information in
regular expressions, through the “+” and “−” labels; this signifi-
cantly augments their expressiveness.

Typestate verification [18] is similar to this paper in the sense that
it defines classes of regular expressions over program events that are
checkable in polynomial time. However, the checks described here do
not belong to any of those classes. On the other hand, typestate ver-
ification problems take into account (a single level of) aliases among
variables, while we currently ignore alias information.

A quite different approach to program checking is to express used-
defined properties as so-called contracts associated to interfaces, and
consisting in predicates to be checked before and after function calls.
Thus, JML [6] extends Java with contracts expressed as stylized com-
ments, and Spec# [5] extends C# with contracts integrated in the base
language. In both of these systems, user properties cover a restricted set
of first-order logic, and may be checked either statically or dynamically.
Similarly to our approach, user properties are handled by an extended
compiler. Moreover, some of the properties mentioned in this paper
can be re-phrased as function contracts. One major distinction is that
contracts are tied in these systems to pre- and post-conditions around
function (or method) calls, while mygcc can check properties on every
program construct, using pattern matching — not only on function
calls. Besides, contract properties cannot directly refer to the control
flow, which is a very natural way to express some properties. On the
other hand, Spec# defines non-null types that are statically checked,
which allows to protect against null pointer de-references. These types
are similar to CQUAL’s type qualifiers, discussed above.

8. Conclusion

We presented a pragmatic approach for easily extending existing com-
pilers with user-defined checks, very simple to express and very effi-
ciently checked. The practical applicability of the approach was demon-
strated by its very concise implementation in the gcc compiler.

asej.tex; 27/11/2007; 21:37; p.33

34

The fusion between checking and compiling enables a software devel-
opment method in which checking permanently accompanies evolution,
from the early coding phase to the maintenance phase. It also consid-
erably increases efficiency by eliminating a lot of duplicated analyses.

Beyond these immediate advantages, the fusion between the checker
and the compiler opens up new perspectives for:

− Integrating specifications within library interfaces, with no lan-
guage extension: each interface file could be complemented by a
separate check file describing sequencing constraints.

− Integrating specifications within the program itself: since the com-
piler is also the checker, one can imagine to define, enable, and
disable user checks using compiler pragmas.

− Integrating checking with program analyses and optimizations: by
implementing all in the same tool, cross-fertilizations are possi-
ble, such as optimizations dependent on sequencing constraints,
or checks facilitated by program optimizations; we have shown in
section 5.6 just one example where GVN improves the complexity
of checking.

− Integrating checking within generated code: checks that cannot be
performed statically by the compiler could be easily integrated into
the generated code to be executed at runtime.

Mygcc is a particular point in a wide spectrum of possible trade-
offs. It proves that it is possible to integrate compilation and checking,
with little implementation effort, and with an acceptable overhead. But
this is just a starting point. Important future extensions may include
extending to inter-procedural checks, and to other classes of regular
path queries also checkable efficiently. The main goal of this paper
was to motivate compiler developers to experiment with offering more
powerful user-defined checks. One open question that is raised is: how
much checking power can one put in a compiler to maintain a reasonable
runtime and implementation overhead?

Appendix

A. Complete Condate listing

The complete checkers used by mygcc to perform all the mentioned
tests on the Linux kernel are listed in the following.

asej.tex; 27/11/2007; 21:37; p.34

35

FREE checker:

Do not use freed memory.

from "kfree_skb(%X)" or "dev_kfree_skb_any(%X)" or

"kfree(%X)"

to "%_ = %X->%_" or "%X->%_ = %_"

avoid "%X = %_"

BLOCK checker (1/2):

To avoid deadlock, do not call blocking

functions with interrupts enabled.

from "__global_cli()"

to "%_ = request_irq(%_,%_,%_,%_,%_)" or

"%_ = tty_register_driver(%_)" or

"%_ = __constant_copy_from_user(%_,%_,%_)" or

"%_ = __generic_copy_from_user(%_,%_,%_)" or

"%_ = __constant_copy_to_user(%_,%_,%_)" or

"%_ = __generic_copy_to_user (%_,%_,%_)"

avoid "__global_restore_flags(%_)"

BLOCK checker (2/2):

To avoid deadlock, do not call blocking

functions with a spinlock held.

from "spin_lock(%X)" or "spin_lock(%X + %Y)"

to "ia_tx_poll(%X)" or

"%_ = ia_pkt_tx(%_,%_)" or "%_ = ia_start(%_)" or

"%_ = __constant_copy_from_user(%_,%_,%_)" or

"%_ = __generic_copy_from_user(%_,%_,%_)" or

"%_ = __constant_copy_to_user(%_,%_,%_)" or

"%_ = __generic_copy_to_user(%_,%_,%_)"

avoid "spin_unlock(%X)" or "spin_unlock(%X + %Y)"

NULL checker:

Check potentially null pointers returned from

functions.

from "%X = drm_alloc(%_,%_)" or "%X = vmalloc(%_)" or

"%X = kmalloc(%_,%_)" or "%X = alloc_pages(%_,%_)" or

"%X = sb_bread(%_,%_)" or "%X = init_etherdev(%_,%_)" or

"%X = dev_alloc_skb(%_)" or "%X = skb_clone(%_,%_)" or

"%X = iget(%_,%_)" or "%X = iget_locked(%_,%_)" or

"%X = create_proc_entry(%_,%_,%_)" or

"%X = kmem_cache_alloc(%_,%_)" or

"%X = scsi_register(%_,%_)" or "%X = udf_tread(%_,%_)" or

"%X = hpfs_map_anode(%_,%_,%_)" or

asej.tex; 27/11/2007; 21:37; p.35

36

"%X = __idetape_kmalloc_stage(%_,%_,%_)" or

"%X = alloc_skb(%_,%_)" or "%X = findcontrbydriverid(%_)" or

"%X = ipc_alloc(%_)" or "%X = fore200e_kmalloc(%_,%_)" or

"%X = pci_alloc_consistent(%_,%_,%_)" or

"%X = scsi_malloc(%_)" or

"%X = hfs_malloc(%_)" or "%X = ckmalloc(%_)" or

"%X = get_usb_bluetooth(%_,%_)" or

"%X = kmalloc_node(%_,%_,%_)" or

"%X = alloc_etherdev(%_)" or "%X = __bread(%_,%_,%_)" or

"%X = __dev_alloc_skb(%_,%_)" or "%X = ipc_rcu_alloc(%_)"

to "__constant_c_and_count_memset(%X,%_,%_)" or

"%_=__constant_c_and_count_memset(%X,%_,%_)"

or "__constant_c_memset(%X,%_,%_)" or

"%_ = __constant_c_memset(%X,%_,%_)" or

"__constant_memcpy(%X,%_,%_)" or

"__constant_memcpy3d(%X,%_,%_)" or

"%_ = __constant_memcpy3d(%X,%_,%_)" or

"__memcpy(%X,%_,%_)" or

"%_ = __constant_memcpy(%X,%_,%_)" or

"%_ = __memcpy(%X,%_,%_)" or

"%_ = %X->%_" or "%X->%_ = %_" or

"%X->%_[%_] = %_" or "*\(%X + %_\) = %_" or

"%_ = *\(%X + %_\)" or

"*\(\(%X + %_\) - %_\) = %_" or

"\(\(\(%X + %_\)->%_\) = %_\)" or

"%_ = strncmp(%X,%_,%_)" or

"%_ = *\(\(%X + %_\) + %_\)"

avoid +"%X != 0" or +"%X != 0B" or "%X = %_" or

-"%X == 0" or -"%X == 0B" or

-"\(\(%X == 0B\) || %_\)"

References

1. Abraxas Software, Inc. CodeCheck.
http://www.abxsoft.com

2. K. Ashcraft, D. Engler. “Using Programmer-Written Compiler Extensions to
Catch Security Holes”. In Proc. IEEE Symp. on Security and Privacy. May 2002.

3. G. Back, D. Engler. “MJ - a system for constructing bug-finding analyses for
Java”. Technical report, Stanford University. September 2003.

4. T. Ball, S. Rajamani. “The SLAM Toolkit”. In Proceedings of the 13th
International Conference on Computer Aided Verification. LNCS Vol. 2102. 2001.

asej.tex; 27/11/2007; 21:37; p.36

37

5. M. Barnett, K. Leino, and Wolfram Schulte. In CASSIS 2004, LNCS vol. 3362,
Springer, 2004.

6. L. Burdy,Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. Leavens, K. Leino, E.
Poll. “An overview of JML tools and applications.” In T. Arts, W. Fokkink,
eds.: “Eighth International Workshop on Formal Methods for Industrial Critical
Systems (FMICS 03)”. Volume 80 of Electronic Notes in Theoretical Computer
Science (ENTCS)., Elsevier, 2003.

7. Checkstyle. Open-source project at SourceForge.net.
http://checkstyle.sourceforge.net

8. H. Chen, D. Wagner. “MOPS: an infrastructure for examining security proper-
ties of software”. In Proceedings of the 9th ACM Conference on Computer and
Communications Security (CCS). Washington, DC. November 2002.

9. A. Chou, J. Yang, B. Chelf, S. Hallem, D. Engler, ”An empirical study of
operating system errors”. In 18th Symp. Operating Systems Principles (SOSP).
Oct 2001.

10. J. Cobleigh, L. Clarke, L. Osterweil. “FLAVERS: A finite state verification
technique for software systems”. IBM Systems Journal, 41(1). 2002.

11. R. Crew. “ASTLOG: A Language for Examining Abstract Syntax Trees”. In
USENIX Conference on Domain-Specific Languages. October 1997.

12. M. Das, S. Lerner, M. Seigle. “Esp: Path-sensitive program verification in
polynomial time”. In Proc. ACM SIGPLAN Conf. on Programming Language
Design and Implementation (PLDI), Jan. 2002.

13. P. Devanbu. “GENOA — a customizable, front-end-retargetable source code
analysis framework”. ACM Transactions on Software Engineering and Method-
ology (TOSEM) 8(2). April 1999.

14. D. Engler, B. Chelf, A. Chou, S. Hallem. “Checking System Rules Using
System-Specific, Programmer-Written Compiler Extensions”. Proc. of 4th Sym-
posium on Operating System Design and Implementation (OSDI), San Diego.
October 2000.

15. D. Evans, D. Larochelle. “Improving Security Using Extensible Lightweight
Static Analysis”. IEEE Software 19(1). January 2002.

16. J. Foster, M. Fhndrich, A. Aiken. “A Theory of Type Qualifiers”. In ACM
SIGPLAN Conference on Programming Language Design and Implementation
(PLDI). Atlanta, Georgia. May 1999.

17. E. Geay, E. Yahav, and S. Fink. 2006. “Continuous code-quality assurance
with SAFE”. In Proceedings of the 2006 ACM SIGPLAN Symposium on Par-
tial Evaluation and Semantics-Based Program Manipulation (Charleston, South
Carolina, January, 2006). PEPM ’06. ACM Press, New York, NY, 145-149.

18. J. Field, D. Goyal, G. Ramalingam, and E. Yahav. “Typestate verification:
Abstraction techniques and complexity results”. In Proc. of SAS’03, volume 2694
of LNCS, pages 439–462. Springer, June 2003.

19. FindBugs. http://findbugs.sourceforge.net/
20. J. Foster, T. Terauchi, A. Aiken. “Flow-Sensitive Type Qualifiers”. In ACM

SIGPLAN Conference on Programming Language Design and Implementation
(PLDI). Berlin, Germany. June 2002.

21. Gramma Tech. CodeSurfer Path Inspector. http://www.grammatech.com
22. W. Griswold, D. Atkinson, C. McCurdy. “Fast, Flexible Syntactic Pat-

tern Matching and Processing”. In 4th International Workshop on Program
Comprehension. 1996.

23. T. Henzinger, R. Jhala, R. Majumdar, G. Necula, G. Sutre, W. Weimer.
“Temporal-Safety Proofs for Systems Code”. Proc. of the 14th International

asej.tex; 27/11/2007; 21:37; p.37

38

Conference on Computer-Aided Verification (CAV). LNCS 2404. Springer-Verlag,
2002.

24. T. Henzinger, R. Jhala, R. Majumdar, M. Sanvido. “Extreme model check-
ing”. In Proceedings of the International Symposium on Verification: Theory and
Practice. LNCS 2772. Springer-Verlag, 2004.

25. Y. Liu, T. Rothamel, F. Yu, S. Stoller, N. Hu. “Parametric regular path
queries”. ACM SIGPLAN Notices, 39(6) (PLDI). May 2004.

26. M. Martin, B. Livshits, M. Lam. “Finding application errors and security flaws
using PQL: a program query language”. In Proceedings of the 20th annual ACM
SIGPLAN conference on Object oriented programming systems languages and
applications (OOPSLA). 2005.

27. MC bug viewer. http://metacomp.stanford.edu
28. J. Merill, “GENERIC and GIMPLE: A New Tree Representation for Entire

Functions”. Proc. of the GCC 2003 Summit.
29. Mygcc prototype. http://mygcc.free.fr
30. K. Olender , L. Osterweil. “Cesar: a static sequencing constraint analyzer”.

ACM SIGSOFT Software Engineering Notes 14(8). December 1989.
31. PMD. Open-source project at SourceForge.net. http://pmd.sourceforge.net/
32. T. Reps. “Program analysis via graph reachability”. Information and Software

Technology 40(11-12). November/December 1998.
33. B. K. Rosen, M. N. Wegman, F. K. Zadeck. “Global Value Numbers and Re-

dundant Computations”. In Proceedings of the 15th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. 1988.

34. Splint. Open-source project. http://www.splint.org
35. W. Visser, K. Havelund, G. Brat, S. Park and F. Lerda. “Model Checking

Programs”. Automated Software Engineering Journal, 10(2), April 2003.
36. N. Volanschi. “Condate: A Proto-language at the Confluence Between Checking

and Compiling”. Eighth ACM-SIGPLAN International Symposium on Principles
and Practice of Declarative Programming (PPDP). 2006.

37. N. Volanschi, C. Rinderknecht. “Unparsed patterns: easy user-extensibility of
program manipulation tools”. In ACM SIGPLAN 2008 Workshop on Partial
Evaluation and Program Manipulation (PEPM ’08), January 2008. To appear.

asej.tex; 27/11/2007; 21:37; p.38

