
Condate: A Proto-language at the Confluence Between Checking
and Compiling

Nic Volanschi
mygcc

nic.volanschi@free.fr

Abstract
Recent years have seen the advent of many different tools for pro-
gram checking against user-defined properties. Despite this encour-
aging trend, checking technology is used still marginally today, and
only on an occasional basis. Existing checkers are standalone tools,
associated — correctly or not — with low efficiency, and duplicat-
ing much work already done in the compiler. We believe that, as a
complement to more precise verifiers, the next generation of com-
pilers should integrate some amount of user-defined checks that can
be performed efficiently.

Combining checking and compiling enables a pervasive prop-
agation of checking technology and continuous use of checking
throughout development. It also enables cross-fertilization between
the two passes, resulting in increased expressiveness, precision, and
even in improved complexity of the checking algorithm.

We illustrate this integrated approach with a full-fledged check-
ing compiler for C, extensible through Condate. Condate is a
declarative language for expressing simple user-defined program
properties to be checked in addition to normal compilation. Con-
date mixes in a very concise form syntactic, semantic, control flow,
and data flow properties. These properties are defined as a new class
of regular path expressions over the control-flow graph, checkable
in linear time and covering many useful checks.

We demonstrate the viability of the integrated approach based
on Condate by applying it to successfully check some parts of the
Linux kernel.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Specialized application lan-
guages

General Terms Algorithms, Languages, Verification.

Keywords Declarative languages, Compilers, Program checking,
Customization.

1. Introduction
There have been recently important advances in software checking
materialized in the advent of many different tools performing vari-
ous levels of checks. These tools range from purely syntax check-
ers [5, 29, 9, 19, 12, 11], going through lightweight model checkers

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PPDP’06 July 10–12, 2006, Venice, Italy.
Copyright c© 2006 ACM 1-59593-388-3/06/0007. . . $5.00.

[18, 28, 8, 14, 2, 6, 24, 10, 22] up to sound software model checkers
[13, 3, 20].

Existing tools use various approaches, but share a common,
apparently minor design choice: they are specialized tools, doing
only program checking. There are several important drawbacks of
this design:

• most of the tools are completely decoupled from existing devel-
opment environments

• they duplicate a considerable amount of work on program pars-
ing and program analysis; this is true even for tools that achieve
a superficial level of integration by being called automatically
from existing IDEs or makefiles

• they afford to perform costly analyses, which make them un-
suitable for daily use throughout development; at best, existing
tools aim only at scalable analyses

• last but not least, many programmers completely ignore their
existence.

As a consequence of these and maybe other reasons, for instance
related to usability or to limited distribution policies (some propri-
etary tools being kept as a competitive advantage), checking tools
are not used on a large scale nowadays.

To solve the above design-related issues, we propose to integrate
some amount of user-defined checking within the core of every
development process — the compiler.

In a previous work, we showed that user-defined checks can
be easily integrated in any existing compiler, by using a language-
independent pattern matching technique based on unparsed patterns
[33]. Thereby, unparsed patterns enable a pervasive use of checking
technology by every programmer. We have implemented this ap-
proach in a full-fledged checking compiler prototype called mygcc
[34], representing a customizable version of the popular gcc com-
piler. This prototype checks and compiles full C while adding only
about 1000 lines of C source code to the gcc compiler. Based on
this prototype, we showed that integrating checking and compiling
enables to continuously perform checking throughout software de-
velopment. This method of permanent checking brings important
advantages such as catching bugs in earlier cycles when they are
cheaper to fix, and avoiding to re-introduce known bugs.

This paper presents the declarative language used to express
user-level checks for mygcc, and formalizes its definition. Our
language, called Condate, covers a limited class of sequencing
properties on program events, lying at the confluence between
control flow and data flow. Similar to previous approaches, program
events are identified by syntactic patterns. However, unlike existing
approaches, a minimal amount of data flow information is blended
into the language without sacrificing its declarative style. This
blending is achieved by defining Condate expressions as a restricted
class of parametric regular expressions over a labeled version of the

control-flow graph (CFG) of a program. The class of properties is
designed to be checkable most efficiently during compilation, but
to include nevertheless many useful checks.

We show that implementing Condate within a compiler (as op-
posed to in a standalone checking tool) not only enables perva-
sive and permanent checking, but also allows for interesting cross-
fertilization between checking and compiling, including an im-
provement in the running time complexity of the checking pass.

Using the implementation within mygcc, we evaluate the Con-
date language along several axes on a concrete checking bench-
mark consisting of some part of the Linux kernel. The evaluation
axes include the language’s expressiveness (the class of express-
ible checks), its precision (the rate of missed bugs and false errors),
and the overhead of the checking pass. This experiment shows that
the language can be checked efficiently enough to let programmers
add new checks at compilation. This experiment also shows that the
expressible checks may avoid hundreds of common bugs that are
detected today only by more complex, standalone, software model
checkers.

The main contributions of this paper can be summarized as
follows:

• we present the Condate declarative language for expressing
user-defined checks to be performed in addition to normal com-
pilation, and integrating in a very concise form syntactic, se-
mantic, control flow, and data flow information

• we precisely define Condate expressions as a new class of
parametric regular expressions over the CFG of a program

• we show several benefits of integrating compilation and check-
ing, including an improvement of the running time complex-
ity of checking using global value numbering on three-address
code

• we validate the expressiveness, the precision, and the efficiency
of Condate by applying it to successfully check some part of
the Linux kernel

The rest of this paper is organized as follows. Section 2 re-
calls the notion of unparsed patterns and the approach of compiler-
integrated checking, in order for this paper to be self-contained.
Section 3 informally describes the Condate language and its un-
derlying design principles, before we give an exact definition in
Section 4. Section 5 describes a standalone algorithm for checking
Condate properties. The benefits of compiler-integrated checking
are described in Section 6. Section 7 presents the Linux experiment
validating and evaluating the Condate language and our prototype.
Section 8 discusses related work and Section 9 concludes.

2. User checks in any compiler
Our integrated approach to program checking consists in adding
user-defined checks into the tool which constitutes the core of every
development process: the compiler. This design decision enables a
really widespread use of program checking by every programmer,
and also a continuous use of checking throughout development.

Our goal was not just to build one experimental checking com-
piler, but to define a method to integrate user checking into any
existing compiler. Therefore, the implementation had to be eas-
ily ported to any language without the need to develop complex
language-specific front-ends. These language-independence was
achieved by a minimalist implementation of pattern matching, us-
ing unparsed patterns.

2.1 Unparsed patterns

Traditionally, source code pattern matching has been reduced to
tree matching, following two different approaches.

According to the first approach, patterns are expressed directly
as ASTs (abstract syntax trees), so that any algorithm for tree
matching can be used to match them with the program AST. This
approach is simple to implement, but writing patterns in AST form
requires the user to be aware of both the AST representation of
programs and a specific textual notation for it.

According to the second approach, patterns are expressed di-
rectly in the concrete syntax of the programing language extended
to contain pattern variables (also called meta-variables to distin-
guish them from the variables of the underlying programming lan-
guage). Writing patterns in concrete syntax is trivial for any pro-
grammer, but this approach is difficult to implement, because it re-
quires to build a pattern parser, implementing an extended version
of the programming language’s grammar. Extending the grammar
of a real programming language to allow for pattern variables is
a difficult task, because it requires adding many new productions
that usually introduce new conflicts in the grammar, which may be
tedious to solve. As a result, pattern parsers usually implement a
limited pattern grammar, allowing meta-variables to occur only in
certain positions.

Thus, abstract syntax patterns are easy to implement but difficult
to use, while concrete syntax patterns are easy to use but difficult to
implement. To solve this apparent contradiction without sacrificing
any of the terms, we designed a new technique of pattern matching
based on unparsed patterns.

Unparsed patterns are program fragments written in the con-
crete syntax of a programming language where meta-variables may
replace any construct that is represented as a subtree in the AST.
However, unparsed patterns can be matched with ASTs without be-
ing parsed [33]. The key insight behind unparsed pattern matching
is that when matching a program AST with a pattern represented
as a string, there is enough structure information in the AST so that
the pattern needs not be parsed. In fact, the pattern matching algo-
rithm works by unparsing the AST to compare it with the pattern,
rather than parsing the pattern.

In our notation, unparsed patterns are represented as quoted
strings, in which pattern variables are preceded by an escape char-
acter. In C, the escape character used in the rest of this paper is
“%”, in order to adhere to the familiar convention used for C “for-
mat strings”.

For example, “buf = malloc(sizeof(int));”, “%X = malloc(%Y);”,
“%L = %L->next;” are unparsed patterns representing C state-
ments, and “%X = malloc(%Y)” (without the ending semicolon),
“%X >= threshold”, and “p == NULL” are unparsed patterns rep-
resenting C expressions.

Note that there is no distinction at the formal level between
statement patterns and expression patterns. It just happens that
some patterns may match only statements, while some other may
only match expressions.

An unparsed pattern matches a statement or expression c if there
is a substitution mapping variables to subtrees in the AST of c that
makes the pattern equal to c. (We also say sometimes that the c
matches the pattern.) This implies that a same variable occurring
several times in a pattern must stand for the same subtree. For
cases where the value of the variable is not important, there is an
anonymous variable, noted “% ”, that is always free.

For instance, the pattern “%L = %L->next;” matches the state-
ment “list = list->next;” under the substitution {l → list}, but it
does not match the statement “p = buf[0]->next;”.

It may be useful to consider that a pattern matches a code
fragment if it matches any subtree of the fragment, as opposed to
considering only “exact” matches. In this case, the pattern “%X =
malloc(%Y)” would match both C expressions and C statements
containing such expressions. We choose to adopt this convention in
the rest of this paper.

By avoiding to implement a pattern parser, unparsed pattern
matching is completely language-independent, except the part that
unparses an AST. Unparsers for any language can be generated
automatically based on the grammar of the language. Moreover,
most compiler already include an unparser for debugging purposes.
As a result, unparsed pattern matching can be implemented almost
for free in any compiler.

2.2 The integrated approach

The portable, language-independent technique of unparsed pat-
terns, opens the way to integrate user-defined syntax checks in
compilers. Building on this base, one can integrate more power-
ful checks. However, the design decision of integrating checking
and compiling imposes a number of severe constraints on the im-
plementation:

• checking has to be fast, which means not only scalable, but
comparable to compilation time; ideally, checking should be of
linear complexity in time and space

• the interface has to be smoothly integrated into the compiler
interface, and trivial to use

• the implementation cannot contain complex tools such as the-
orem provers, expression simplifiers, or complex language in-
terpreters, so as compiler implementors can practically accept
it

In order to fulfill the above constraints, we chose a new balance
between checking power and precision on one hand, versus speed
and usability on the other hand. This new balance is achieved by
a minimalist class of user-defined properties, checkable in linear
time, but covering nevertheless many useful checks.

Before giving a formal definition of the Condate language, the
next section informally describes its main design principles.

3. Condate design
Condate is a declarative language expressing checks by mixing
several levels of code properties.

3.1 Syntax

By allowing meta-variables to stand for any subtree in the AST, un-
parsed patterns provide a powerful tool to express syntax informa-
tion in user-defined properties. This is already sufficient to define
a large class of properties related to code inspection. To go beyond
that, we need to integrate control-flow information in our interface.

3.2 Control flow

It is well known that many dataflow analyses and program checks
can be expressed as reachability queries over an “exploded program
graph”, which is the product of the program CFG and another graph
(a value-flow graph, or an automaton, for instance).

Integrating control-flow in our minimalist interface is based on
the observation that many sequencing properties that were success-
fully used in the literature to find bugs in real code can be expressed
as one or several instances of reachability queries directly on the
program CFG. This form of reachability problems, that may be
called “constrained reachability queries” have the form: ‘Is there
a path from a statement f to a statement t avoiding statements v?’,
where f , t, and v are unparsed patterns.

For example, looking for memory leaks can be expressed as ‘Is
there a path from a “malloc(%X)” statement to the exit node avoid-
ing statements “free(%X)”?’. The exit node may be either any re-
turn statement when checking intra-procedurally, or return state-
ments from the main function, when checking inter-procedurally.

Similarly, many other common checks may be expressed as
constrained reachability queries. For instance:

• reading a closed file: from “close(%F)” to “read(%F,%)” avoid
“%F=open(% ,%)”

• double lock: from “lock(%X)” to “lock(%X)” avoid “un-
lock(%X)”

• blocking operation with interrupts disabled: from “disable -
interrupts()” to “blocking function()” avoid “enable interrupts()”

3.3 Data flow

Using reachability in the CFG and unparsed patterns, an unex-
pected number of useful checks can be encoded. However, the
properties thus defined lack any information on the values of pro-
gram variables.

To give a concrete feeling of this limitation, let us consider
a check for potential null dereferences of dynamically allocated
pointers. This check can in principle be expressed as a reachability
query: ‘Is there a path from “%X=malloc()” to “*%X” avoiding
“if(%X!=0)”?’. However, as it is written, the reachability query
ignores the outcome of the test. However, only paths going through
the “else” branch could contain potential null dereferences.

In order to take into account the result of the test, the query
should avoid only successful tests matching the pattern “%X!=0”.
That is, the query has to be written more precisely as: ‘from
“%X=malloc()” to “*%X” avoiding successful tests “%X!=0” and
unsuccessful tests “%X==0”’. This way, dataflow information can
be integrated very naturally in our minimalist interface.

3.4 Semantics

Taking advantage of the compiler-integrated approach, semantic
information can be easily added by complementing patterns with
calls to executable predicates internal to the compiler. For instance,
a pattern such as the following one could match statements that
allocate not enough space for the destination variable or expression:
“%X=malloc(y)” | is cst(y) && val(y)<size(typeof(x))

3.5 Mixing all together

A constrained reachability query (CRQ) is a query of the form: “Is
there a path from a statement f to a statement t avoiding: statements
v, successful tests vt and unsuccessful tests ve?”. A CRQ can thus
be expressed as a series of patterns. We sometimes refer to the
patterns according to their role in the CRQ as: the “from” pattern,
the “to” pattern, the “avoid” pattern, etc.

Of course, some patterns can be omitted in a CRQ, to express
plain reachability or even purely syntactic queries:

• integer division: [is there a path] from “int %X;” to “%X/% ”?
The “avoid” patterns missing altogether, we have a pure (or
unconstrained) reachability query.

• undefined side-effect constructs: [is there a path] from “%X[i++]
= %Y[i++]” [to anywhere]? As the “to” patterns is missing,
this represents a purely syntactic query looking for statements
matching the pattern.

Thus, positive patterns such as the “to” pattern default to the
“ ” pattern matching anything, while negative patterns such as the
“avoid” pattern default to “”, the empty pattern matching nothing.
The “from” pattern cannot be omitted.

This minimalist user interface has the following advantages:

• a large number of useful checks can be expressed

• checks are encoded very compactly, grouping together syntac-
tic, semantic, control flow and data flow information

• checks are expressed very naturally from a programmer point
of view

• user properties expressed as CRQs can be checked in linear time
and space, as showed below.

4. Condate definition
CRQs can be formalized as a particular class of regular expressions
ranging over paths in the CFG. In principle, we could consider
both intra-procedural and inter-procedural paths without changing
the syntax or the semantics of the Condate language. However,
exploring inter-procedural paths may be considerably less efficient,
and we could not yet prove experimentally that this would lead to
an acceptable overhead compared to compilation times. For this
reason, we will limit ourselves in what follows to the CFG of
a single function. Extension to an inter-procedural setting should
be possible to achieve by implementing graph reachability in a
global CFG using for example the standard method of context-
free language reachability [30], but this is beyond the scope of this
paper.

Let a CFG be a graph consisting of a set of nodes and a set of
edges representing control flow transitions between nodes. There
are two types of nodes in the CFG:

• action nodes, labeled with program statements that do not con-
tain internal control flow. Any number of edges may flow out of
an action node, and they are all unlabeled.

• decision nodes, labeled with expressions in the program used to
decide on control flow. There are exactly two outgoing edges,
one is labeled with “+” and corresponding to a successful test
and the other labeled with “-”.

We say that a CFG node matches an unparsed pattern if the
statement or expression labeling the node matches the pattern.

Edge patterns are defined as follows:

• (generic) an unparsed pattern p is an edge pattern matching any
edge leaving any node matched by p

• (success) if p is an unparsed pattern, +p is an edge pattern
matching the edges labeled “+” leaving any node matched by
p

• (failure) if p is an unparsed pattern, −p is an edge pattern
matching the edge labeled “-” leaving any node matched by p.

For example, “%X = malloc(%Y)”, +“%P != NULL”, and -“%X
> threshold” are edge patterns.

A regular path expression over CFG is a regular expression over
an alphabet consisting of edge patterns. Regular expressions are
recursively defined as:

• (atomic) if e is an edge expression, e is a regular path expression
matching any edge matched by e

• (disjunction) if e1, ... en are edge patterns, [e1...en] is a regular
path expression matching any edge matched by any of the edge
patterns

• (complement) if e1, ... en are edge patterns, [^e1...en] is a
regular path expression matching any edge that is not matched
by any of the edge patterns

• (repetition) if r is a regular path expression, r∗ is a regular
path expression matching an arbitrary concatenation of paths
matched by r

• (concatenation) if r1 and r2 are regular path expressions, r1r2

is a regular path expression matching any concatenation of two
paths matched by r1 and r2, in this order.

For example, if a and b are unparsed patterns, a∗b[^ab]∗b is a
regular path expression.

By the above definitions, a regular path expression matches a
path in the CFG if there is a substitution that makes the edge
patterns match all edges in the path. This means that unparsed
patterns occurring in a regular path expression may share variables,
and one such variable stands for the same expression everywhere.

Properties expressed as regular path expressions can be checked
using a simple worklist algorithm [23] by translating the regular
path expression to an automaton A, and executing transitions in
A that match edges in the CFG. The algorithm starts from the en-
try node and the initial state of A with the empty substitution, and
computes all the possible states in A and all corresponding sub-
stitutions that can be obtained through this execution. Thus, the
algorithm computes the reachable triples 〈n, a, s〉 consisting of a
node n in the CFG, a state a in A and a substitution s. Note that
several substitutions may correspond to a node n and a state a for
two reasons: (1) n and a can be reached through different paths in
the CFG, leading to different substitutions, and (2) different sub-
stitutions may match a same regular path expression to a same
path in the CFG if some pattern variables are instantiated by neg-
ative patterns. At each step, the algorithm computes a match (lin-
ear in the size of a CFG label) and a substitution merge (linear
in the number of pattern variables) to recompute the current sub-
stitution. Therefore, the running time of this worklist algorithm is
O(CFG × A × substs × (pvars + labelsize)), where pvars is
the number of pattern variables, labelsize is the size of CFG node
labels, and substs is the number of different substitutions that may
correspond to a same node and a same state, which is of the or-
der varspvars if there are vars variables in the program that may
become instances of pattern variables.

As our goal is to integrate user property checking into normal
compilation, we consider that this algorithm is not efficient enough
to lead to an acceptable performance overhead. This is why we
decided to restrict regular path queries to a class that is checkable
in linear time and space.

We can now precisely define the grammar of our minimalist
language in BNF form:

S → from D [to D [avoid D]] (1)

D → E | E or E (2)

E → P | +P | −P (3)

P → "(%V | lit)∗" [|expr] (4)

In the above rules, S is the start symbol, D represents a disjunc-
tive pattern, E an edge pattern, P an unparsed pattern, V a pattern
variable, lit a literal C code fragment, and expr a C expression.
Note that in the last production, the first vertical bar denotes alter-
natives in the grammar, while the second vertical bar is part of the
Condate language, read as “such that” and used to add an optional
semantic constraint as shown in section 3.4.

Let us now define the precise meaning of a CRQ as a regular
path expression. A CRQ of the form ‘Is there a path from a state-
ment of type f to a statement of type t avoiding statements of type
v, successful tests of type vt and unsuccessful tests of type ve?’ is
written in Condate as ‘from f to t avoid v or +vt or −ve’, and
corresponds to the regular path expression f [^v + vt − ve]

∗t.
The automaton equivalent to a CRQ is shown in Figure 1, and

has a fixed size. This reduces the factor A in the time complexity
to a constant. We already saw that in spite of this restriction, many
useful properties can be expressed.

Furthermore, we impose the restriction that all pattern variables
occurring in a CRQ must be instantiated in the pattern f that rec-
ognizes “from” statements, which must be a positive pattern. This
not only guarantees that pattern variables are always instantiated in
a positive pattern, but also that there is at most a single substitution
instantiating a CRQ to a path in the CFG (because all pattern vari-

Figure 1. Automaton equivalent to a CRQ.

ables are bound in the first edge of the path). This reduces the fac-
tor substs in the time complexity to the number of CRQ instances,
that is, the number of different substitutions that instantiate the f
pattern to “from” statements in the program.

This second restriction does not seem to be a severe limitation
in practice, because variable instantiated in negative patterns usu-
ally count for “don’t cares”, which are supported in CRQ through
the anonymous variable “% ”. Also, we believe that this restriction
makes queries easier to write and understand, because users natu-
rally tend to think in terms of problem instances: for any variable x
there is a memory leak if P (x); given two locks x and y there is a
contention between them if P (x, y); etc.

5. Standalone Implementation
Due to these two restrictions, a CRQ instance is checkable in time
O(CFG × (pvars + labelsize)). Considering that the number of
meta-variables is a constant in practice (frequently 2 or 3), the
only super-linear factor comes from the size of the statements in
the program labelsize. Section 6 will show how this factor can be
improved.

The worklist algorithm cited above uses a non-linear amount of
space, because it associates each node in the CFG with different
automaton states and variable values. In the particular case of
CRQs, linear space usage can be achieved with no penalty on
the time complexity if CRQ instances are checked independently,
as implemented by the algorithm below. The algorithm takes a
CFG and a CRQ = 〈from, to, avoid〉 consisting of a triple of
(possibly disjunctive) patterns:

proc check(CFG, from, to, avoid)
substs← ∅ // collect CRQ instances
foreach node t ∈ CFG do

global store← ∅ // empty substitution
match(t, from) // instantiating global store
substs← substs ∪ {global store}

end
for subst ∈ substs do // check one CRQ instance

global store← subst // instantiate variables
list← []
foreach node t ∈ CFG do

// put “from” nodes of the instance on the list
if match(t, from) then list← [t | list] fi

end
// traverse instantiated CFG
while list = [t | rest] do

list← rest
if ¬visited(t)

visited(t)← true
if match(t, to)

print “reached t”
elsif ¬match(t, avoid)

foreach edge e = t→ t′ do
if ¬match(e, avoid)

then list← [t′ | list]

fi
end

fi
end

end
end

In a first traversal, the algorithm scans all the program for
“from” statements, and collects the number of different substitu-
tions associated to them. Each such substitution represents an in-
stance of the CRQ, which is then checked in two subsequent passes.
The first pass over an instance collects “from” nodes. These consti-
tute the initial worklist for the second pass over an instance, which
traverses the CFG from “from” nodes to “to” nodes using only
edges matching the via pattern. For any “to” node that is reached,
there exists a path satisfying the CRQ. The space used by the algo-
rithm is of only one bit per CFG node, to recognize already visited
nodes, plus a global store for pattern variables, recording their sub-
stitution for the current instance of the CRQ. However, to compute
the set of all instances of a CRQ during the first traversal of the
algorithm, a set of global stores is needed. New CRQ instances are
added only if their stores differently instantiate the “from” pattern.

6. Integrated Implementation
When implementing the checking algorithm inside a concrete com-
piler, we encountered some interesting challenges, but also some
interesting opportunities for cross-fertilization.

We chose gcc as our base because we wanted to demonstrate
that the compiler-integrated approach can be easily incorporated
into any existing compiler. This is why we eliminated from the
start the idea of using a research-oriented open compiler that would
have eased the task by already providing some infrastructure for
extensibility.

6.1 Dealing with temporaries

The main difficulty we encountered was that analyses and opti-
mizations within gcc are performed on a simplified internal rep-
resentation of the AST called GIMPLE [26]. In GIMPLE, expres-
sions are broken down to a three-address form, using temporary
variables to store intermediate values. We had to adapt the pat-
tern matching mechanism such that when encountering a temporary
variable in the matched code to conceptually inline its definition.

Let us illustrate this method by the following code fragment, to
be checked for unreleased locks ‘from “lock(%X,%Y)” to “return”
avoid “unlock(%X,%Y)”’:

lock(step[i+1], NOWAIT);
critical_section(...);
unlock(step[i+1], NOWAIT);
return;

In GIMPLE, the same code may look as follows:

T.2 = i + 1;
T.3 = step[T.2];
lock (T.3, 0);
critical_section(...);
T.4 = i + 1;
T.5 = step[T.4];
unlock (T.5, 0);
return;

Matching the “from” pattern “lock(%X, %Y)” with the state-
ment “lock(T.3, 0)” bounds the pattern variable x to the temporary
variable “T.3”, so then the “to” pattern “unlock(%X, %Y)” will not
match the statement “unlock(T.5, 0)”, because “T.5” is a different
variable than “T.3”. Therefore, a checking algorithm not taking into

account temporary variables does not recognize the correct unlock
statement, so erroneously reports that the lock is not released before
the return.

This problem can be solved by observing that it is possible to
reconstitute the syntax in the original program. Indeed, in the GIM-
PLE form before optimizations, each syntactically complex expres-
sion (containing no internal control flow) is broken down into a
block of straight-line code where each use of a temporary corre-
sponds to a definition in the same block. Of course, there may be
several subsequent uses for a same definition. Note that this local
definition property is not specific to GIMPLE, but is rather typical
for how compiler introduce temporary variables, before optimiza-
tion passes. The original expression can then be reconstituted by
inlining temporaries, that is, by substituting every temporary vari-
able with its corresponding definition above in the block. This inlin-
ing can be integrated in the matching algorithm, by systematically
considering the definition of a temporary instead of the temporary
itself.

6.2 On-demand temporary inlining

Interestingly, some inlining can be avoided if the intermediate rep-
resentation has been constructed using a form of global value num-
bering [31]. In such a representation, a given temporary variable
represents always the same expression, or an equivalent one. Ac-
tually, gcc does use such an algorithm for building the GIMPLE
form, which means that in reality the previous code fragment really
looks as follows:

T.2 = i + 1;
T.3 = step[T.2];
lock (T.3, 0);
critical_section(...);
T.2 = i + 1;
T.3 = step[T.2];
unlock (T.3, 0);
return;

In this form, inlining of T.3 can be avoided by binding the pat-
tern variable X to “T.3” instead of to “step[i+1]”. Thus, inlining
a temporary can be avoided by binding a pattern variable that is
shared between two patterns to the temporary instead of to the
expression it represents. However, when the pattern portion that
is matched with the temporary is not a free variable, the tempo-
rary must be inlined to check that its definition corresponds to
the pattern. For example, if the above code fragment is checked
against the CRQ ‘from “lock(%X+1, %Y)” to “return” avoding
“unlock(%X+1, %Y)”’, the definition of “T.3” has to be recursively
inlined to retrieve the ’+’ operator in the pattern.

Thus, this on-demand inlining is driven by the pattern, not by
the original statement, which means that its recursive application is
bounded by the size of the user pattern.

When eager inlining is used, the matching time is linear in the
size of the statements in the original program and in the size of
user patterns. When on-demand inlining is used, the matching time
is linear in the size of GIMPLE statements and in the size of user
patterns. The size of GIMPLE statements is constant, and the size
of patterns is under user control, and may be eventually bounded by
a constant. Therefore, on-demand inlining changes the complexity
of the checking algorithm by replacing the factor related to the
size of program statements, labelsize, with the size of the patterns,
patternsize.

7. Assessment
We entirely implemented the Condate language in our prototype
mygcc. Mygcc is a fully functional gcc version that performs (intra-
procedural) checking as an additional compilation step. In terms of

user interface, we just added a new gcc flag “–tree-check=file” to
specify a file containing CRQ definitions. Mygcc is freely available
in binary form [27]. We are currently discussing with the gcc
development team to incorporate source changes into the official
gcc release.

In order to validate and evaluate assess the Condate language,
we applied mygcc to reproduce the detection of some previously
reported bugs in the Linux kernel. These bugs were reported by a
previous study [7] that used 12 different user checkers written in
Metal for the MC tool and detected over 500 bugs in kernel version
2.4.1. All these bugs were manually inspected and/or confirmed by
kernel developers. A summary of the MC results is freely accessible
as an on-line database [25]. Checks in Metal are considerably more
powerful than CRQs — they are expressed as arbitrary automata
mixed with executable C code.

Using this excellent and well-established testbed, our approach
had to be validated in several respects:

• test the expressiveness of the language by expressing a maxi-
mum number of checks

• test the precision of the language by reproducing a maximum
number of bugs with the smallest possible number false posi-
tives

• test the scalability and performance of mygcc on a large code
base

7.1 Expressiveness

To asses the expressiveness of Condate, we expressed as CRQs as
much as possible of the 12 MC checkers cited above. The results
are given in Table 1.

As can be seen in the table, 11 checkers out of the 12 can be ex-
pressed partially or completely in Condate, only two of them (SIZE
and VAR) using semantic patterns. A single checker (INULL) can-
not be expressed conveniently as a CRQ because it encodes com-
plex checks about pointer uses and the assumptions that can be de-
duced from them.

An interesting comment about the expressiveness of CRQ-based
properties is that this framework allows to optimize the checkers by
factorizing similar user properties in the same CRQ. For instance,
many similar checks written for the Linux kernel are different ver-
sions of the LOCK checker. They all check for leaving a function
with an active lock, but differ only on the names of the functions
used to lock (l1, l2, ..., lN) and unlock (respectively: u1, u2, ...,
uN). These similar checks can be grouped in the following CRQ:

from “l1(%X)” or “l2(%X)” or ... “lN (%X)” to “return”
avoid “u1(%X)” or “u2(%X)” or ... “uN (%X)”.

Theoretically, this factorization trades some precision for speed,
because it would miss the bug in the code fragment: “l1(a); u2(a);
return;”, where an incorrect function (u2 instead of u1) is used to
release the lock. In practice, different lock functions are usually
type-incompatible, so the situation may never occur. Anyways, it is
up to the user to evaluate if such a factorization is safe or not.

7.2 Precision

To test the precision of mygcc, we chose one Metal checker called
“NULL” that checked possible null pointer dereferences and re-
ported 124 bugs in 89 source files in the kernel. We rewrote this
Metal checker in Condate, and we tried to reproduce as much as
possible of the bugs that were reported by it.

These 89 source files also contained bugs reported by other
Metal checkers. We also rewrote two of these checkers in Con-
date and tried to reproduce all the corresponding bugs in these
89 files. These two Metal checkers were looking for uses of freed
pointers (the “FREE” checker) and calls to blocking functions with

Checker Tool Specification
BLOCK MC To avoid deadlock, do not call blocking functions with interrupts enabled or a spinlock held

mygcc from “lock()” to “blocking function()” avoid “unlock()”
NULL MC Check potentially null pointers returned from routines

mygcc from “%X=malloc(%)” to “*%X” or “%X->% ” avoid +“%X != 0” or -“%X == 0”
VAR MC Do not allocate large stack variables (>1K) on the fixed-size kernel stack

mygcc “%T %X” | TYPE P(T) && TREE CODE(X)==VAR DECL && DECL SIZE(X)>1024
INULL MC Do not make inconsistent assumptions about whether a pointer is null

mygcc N/A
RANGE MC Check bounds of array indices derived from user data

mygcc from “copy from user(&%X, % , %)” to “malloc(%X)” or “% [%X]” avoid “%X < % ” or “%X <= % ”
LOCK MC Release acquired locks

mygcc from “lock(%X)” to “return” avoid “unlock(%X)”
MC Do not double-acquire locks
mygcc from “lock(%X)” to “lock(%X)” avoid “unlock (%X)”

INTR MC Restore disabled interrupts
mygcc from “cli()” to “return” avoid “sti()”

FREE MC Do not use freed memory
mygcc from “free(%X)” to “*%X” or “%X->% ” avoid “%X=% ”

FLOAT MC Do not use floating point in the kernel
mygcc from “float %X” or “double %X”

REALLOC MC Do not loose a pointer if realloc fails and returns null
mygcc from “%X = realloc(%X)”

PARAM MC Do not dereference user pointers
mygcc from “copy from user(&%X, % , %)” to “*%X” or “%X->% ” avoid +“%X != 0” or -“%X == 0”

SIZE MC Allocate enough memory to hold the destination type.
mygcc “%X = malloc(%Y)” | TREE INT CST(X) && !INT CST LT(Y, size(typeof(X)))

Table 1. Expressiveness comparison between Metal and Condate.

interrupts disabled or while holding a spin lock (the “BLOCK”
checker).

The three checkers rewritten in Condate (completely included
in Appendix A) are compact: 49 lines for NULL, 4 lines for FREE,
and 16 lines for BLOCK. The NULL checker is the largest because
we aimed at reproducing all the bugs found by the Metal checker
in the whole kernel, so we had to include all the syntactic patterns
it checked for. For the other two checkers, we wanted to reproduce
only the bugs in the selected 96 files, so we could include only the
particular patterns that appeared in these files.

Within these 89 files, we successfully found 117 NULL bugs
out of the 121 found by MC. Only four NULL bugs were missed
by mygcc, in spite of its minimal interface and implementation.
The FREE and BLOCK checkers found 13 bugs out of 13 reported
by MC on these files. Among the bugs found by both MC and
mygcc, two were diagnosed slightly differently. In addition to the
bugs previously reported, mygcc found four new bugs.

7.2.1 Missed bugs

Two of the bugs missed by Condate are of the same type, one
in file “namei.c”, function “udf add entry”, and another in file
“upcall.c”, function “coda upcall”. The latter for instance occurs
in the following code fragment:

CODA_ALLOC(sig_req, struct upc_req *,
sizeof (struct upc_req));

CODA_ALLOC((sig_req->uc_data), char *,
sizeof(struct coda_in_hdr));

sig_inputArgs=(union inputArgs *)sig_req->uc_data;
sig_inputArgs->ih.opcode = CODA_SIGNAL;

In this fragment, “CODA ALLOC(pointer, size)” is a macro
that allocates memory of the given size into the given pointer using
function “kmalloc()”, without checking the returned pointer against
null. There are two errors in this fragment. The first one, found

by both MC and mygcc is the dereference “sig req->uc data”
on the third line, without checking “sig req” for null. The sec-
ond error, found by MC but not by mygcc is the dereference
“sig inputArgs->ih.opcode” on the last line, without checking the
pointer “sig inputArgs” for null. Mygcc does not find the error
because this pointer comes from the allocation in the second line
but only indirectly through variable “sig req->uc data”. Mygcc
does not track equalities between different variables (other than
temporary inlining), so it misses this second error. As opposed to
this, MC finds the error because the user property is expressed as
an executable automaton that can carry values between different
states.

Two other missed bugs are of a different type. They occur in file
“aironet4500 card.c”, for instance in function “awc4500 isa probe”,
in the following code:

if (!dev) {
dev = init_etherdev(dev, 0);

}
dev->priv = kmalloc(sizeof(struct awc_private),

(0x02 | 0x01 | 0x04));

In this code fragment, the pointer “dev” is allocated by function
“init etherdev()” and then dereferenced without being checked,
which is a bug. The problem seems trivial to detect at first
sight, but the subtlety comes from the semantics of the function
“init etherdev()”, which depending on the value of its first argu-
ment either initializes an existing structure (if the argument is not
null) or allocates memory (if it is null). Only in the latter case the
function may return a null pointer. To avoid plenty of false posi-
tives, the “to” pattern had to be written “%X=init etherdev(0, %)”.
With this pattern, mygcc finds some real bugs, in cases when an ex-
plicit null pointer is passed. However, in the present example, the
pointer is known to be null only because it has just been tested. MC
is able to deduce this information, but mygcc is not.

7.2.2 False positives

With respect to MC, mygcc found only two additional false pos-
itives, both in file “namei.c”, and both of the same type. For in-
stance, one is found in function “udf find entry”, which contains
the following code fragment:

if (!(fibh->sbh = fibh->ebh = udf_tread(...)))
{
udf_release_data(bh);
return NULL;

}
...
nameptr = (Uint8 *)(fibh->ebh->b_data + poffset

- lfi);

In the addition on the last line, the dereferenced pointer “fibh->ebh”
is guaranteed to be non-null, but the test against null on the first line
is done on another variable, “fibh->sbh”. This is directly visible in
the GIMPLE form below. Again, as mygcc does not track variable
equality, it incorrectly signals the dereference on the last line as an
error.

T.945 = udf_tread (T.916, block, T.944);
fibh->ebh = T.945;
T.946 = fibh->ebh;
fibh->sbh = T.946;
T.947 = fibh->sbh;
if (T.947 == 0B)
{

bh.943 = bh;
udf_release_data (bh.943);
return 0B;

}
...

T.946 = fibh->ebh;
T.959 = T.946->b_data;

On the same example, MC does not signal the false positive because
the user property automaton carries values between different user
variables.

To circumvent mygcc’s false positive on this example, it is
sufficient to inverse the test on the first line from:

if (!(fibh->sbh = fibh->ebh = udf_tread(...)))

to:

if (!(fibh->ebh = fibh->sbh = udf_tread(...)))

This kind of turnaround is easy to find, and in fact is frequently
used by programmers to circumvent false warnings of traditional
compilers, e.g., false warnings about uninitialized variables.

7.2.3 Different diagnostics

For two bugs that were found both by MC and mygcc, there are
some differences in their diagnostics. The first difference concerns
a bug in file “inode.c”, in ‘function “bfs read super”:

inode = iget(s,i);
if (inode->u.bfs_i.i_dsk_ino == 0)
s->u.bfs_sb.si_freei++;

else {
set_bit(i, s->u.bfs_sb.si_imap);
s->u.bfs_sb.si_freeb -= inode->i_blocks; ... }

The bug is that pointer “inode” is allocated by function “iget”
and dereferenced with no check. MC correctly signals the errors on
the second line, when the pointer is dereferenced in the condition
of the if statement. Due to a limitation in its current implementation
mygcc searches “to” patterns only in elementary statements, so it

overlooks the condition of the “if”, and signals the error on the last
line instead. This limitation is easy to eliminate.

The second difference concerns a bug in file “sunhme.c” in
function “happy meal pci init”:

dev = init_etherdev(0, sizeof(struct happy_meal));
...
if (!strncmp(dev->name, "eth", 3)) ...

In this code fragment, pointer “dev” allocated by “init etherdev”
appears to be dereferenced without being checked in the expression
“dev->name”. Indeed, MC signals the error at this precise point. As
opposed to MC, mygcc checks the following GIMPLE form:

T.2302 = init_etherdev (0B, 512);
dev = T.2302;
...
dev.2309 = (char *)dev;
T.2310 = strncmp (dev.2309, "eth", 3);

In this GIMPLE form, there is no more dereference of pointer
“dev” before being passed to function “strncmp”! This is simply
because the field called “name” in the “dev” structure is the first
field in this structure, and is a character array. Therefore, to ob-
tain the address of “name”, GIMPLE simply casts the pointer as
a string, and passes it directly to “strncmp”. Indeed, the derefer-
ence “dev->name” in the original code exists only in the concrete
syntax, but does not correspond to a real pointer dereference in the
executed code. Hence, MC signals in fact a false positive in this
expression! However, passing a null pointer to “strncmp” is an er-
ror anyways, which is caught by mygcc because passing a pointer
to “strncmp” has been declared in the CRQ as a “to” pattern, like
other dereferences.

7.2.4 New bugs

Mygcc also found four new bugs not previously reported by the
MC study. The first one is in file “slram.c” in function “init slram”:

mymtd->priv=(void *)kmalloc(sizeof(struct mypriv),
GFP_KERNEL);

if (!mymtd->priv)
{
kfree(mymtd);
mymtd = NULL;

}
memset(mymtd->priv, 0, sizeof(struct mypriv));

In this code fragment, the allocated pointer “mymtd->priv” is
checked for nullity, but even if it is null, the code runs into a
dereference of it, signaled by mygcc. In reality, even the pointer
“mymtd” would be null in this case, but mygcc does not notice this
detail. We do not know why MC overlooked this bug.

Another new bug was found in file “anode.c” in function
“hpfs add sector to btree”. The bug concerns a dereference of
pointer “anode”, allocated by function “hpfs map anode()”. The
control path is too complicated to detail here. It is possible that
MC found this bug but that it has not been validated by manual
inspection.

Finally, mygcc found another new bug found in file “intrep.c”
in function “jffs scan flash”, where pointer “read buf” is derefer-
enced unchecked:

read_buf = (__u8 *) kmalloc (sizeof(__u8) * 4096,
GFP_KERNEL);

...
if(*((__u32 *) &read_buf[i]) !=

JFFS_EMPTY_BITMASK)
break;

Probably, MC overlooked this bug because its NULL checker did
not provide a pattern for such a complex syntax to dereference a
pointer. As opposed to MC, mygcc works on the GIMPLE form
where the “if” condition has been decomposed, so the dereference
of the variable has been rewritten in a more standard form:

i.1176 = (unsigned int)i;
i.1177 = (__u8 *)i.1176;
T.1178 = read_buf + i.1177;
T.1179 = (__u32 *)T.1178;
T.1180 = *T.1179;
if (T.1180 != 0ffffffff)
{
goto <D11400>;

}

Using temporary inlining and cast skipping, mygcc recognizes on
the fifth line the form “*(read buf + %)” that has been declared in
the Condate checker as a dereference.

7.2.5 Automatic vs. manual inspection

From the practical point of view, it is important to note that some
of the real errors found by both MC and mygcc are not at all easy
to find by manual inspection, due to the contrived control path that
should be followed. For example, there is a bug in file “partition.c”,
function “udf fill spartable”, in the following code fragment:

for (i=0; i<rtl; i++)
{
if (index > sb->s_blocksize)
{
udf_release_data(bh);
bh = udf_tread(sb, ++spartable,

sb->s_blocksize);
if (!bh)
{
sdata->s_spar_loc[i] = 0;
continue;

}
index = 0;

}
se = (SparingEntry *)&(bh->b_data[index]
...

}

In this code fragment, the pointer “bh” is assigned to the result
of function “udf tread()” that may return null, but the subsequent
test seems to check “bh” properly. However, the problem is that if
the pointer is null, the continue statement is executed to restart the
loop and in the next iteration the outer-level conditional may be
skipped altogether, to hit the dereference “bh->b data[index]” on
the last line. This example is a typical case where manual inspection
is probably not sufficient.

7.3 Performance

The examples described in the above Linux study illustrate the fact
that mygcc is able to check any program that gcc can compile.
Thus, the scalability of the prototype to real programs is clearly
demonstrated. Beyond that, mygcc aims not just at being scalable
to large programs, but to impose a reasonable overhead on compila-
tion time. We measured the overhead of the three Condate checkers
presented above when compiling three programs that are part of the
Linux study.

The checking overhead is directly related to the number of
checkers used, to the number of CRQ instances found in the pro-
gram, and to the size of the patterns. However, checking time never
exceeded compilation time in these typical examples of the Linux

study. Overheads are of the order of 10-15% for a very simple
checker (FREE, containing a total of 6 patterns), 15% for a mod-
erate checker (LOCK, including 11 patterns), and 50-80% for a
complex checker (NULL, including a total of 51 patterns, among
which 24 are disjuncts of a single “from” pattern). The maximum
overhead when combining all the checkers is 98%.

When interpreting these numbers, it is important to note that we
did not have the time to optimize the implementation of the current
prototype.

8. Related work
The most common approach to user-defined checking is to define a
programming model in which users may write their own program
inspection passes. Tools implementing this approach incorporate a
front-end that parses the program in the form of an AST and offer
either an application programming interface (API) or a domain-
specific programming language (DSL) to walk the AST and imple-
ment different forms of checks.

API-based code inspectors include SoftBench CodeAdvisor
from HP, or Checkstyle [5], in which user-defined checks have to
be coded in C++, respectively in Java. More recently, some extensi-
ble code inspectors such as PMD [29] build an XML representation
of the AST, on which user-defined checks can be expressed either
in JAVA, or in a declarative way using Xpath patterns. API-based
tools allow in theory to implement any user-defined checks. They
offer a solid basis to inspect syntax, but little or no semantic in-
formation is pre-computed. None of these tools pre-compute the
control-flow graph, therefore no dataflow information is available.
For these reasons, API-based code inspectors make it easy to define
syntax checks such as adherence to a coding standard, or computa-
tions based on syntax traversal such as function call graphs or class
hierarchy extraction. In turn, writing any kind of non-local seman-
tic checks such as verifying sequences of operations or performing
model checking requires a significant amount of code.

Tools defining a DSL to write code checkers include CodeCheck
[9], tawk [19], defining an imperative language close to C, Genoa
[12] defining a functional language close to Lisp, and ASTLOG
[11], defining a variant of the Prolog language. DSL-based tools
can very compactly encode sophisticated tree patterns or tree
traversals, but none of the cited DSLs integrate control or dataflow
information in the language, neither in explicit nor implicit form.

Writing checkers for both API and DSL code inspectors re-
quires the user to be aware of the details of the AST representation
for the subject language, in addition to the API or DSL to traverse
it.

Another set of program checkers such as Splint [15, 32] and
CQUAL [17] are based on extensible type checking. In this ap-
proach users must annotate the native types of the programing lan-
guage with qualifiers in order to express new classes of program
properties that can be checked automatically. Type-based checkers
are very efficient (e.g., linear-time) and precise (e.g., sound) in ver-
ifying “global” properties in a program, i.e., that do not depend on
control flow. Some of these checks could definitely be adopted in
a compiler-integrated approach, but for now are implemented as
standalone tools. Some extensions were added to CQUAL to check
flow-sensitive types [18], but in this case the performance is prob-
ably no more suitable for compiler-integrated checking.

Yet another class of extensible checkers transpose model check-
ing techniques, used since a long time in hardware verification, to
programs, viewed simply as CFGs, in which the semantics of indi-
vidual program statements is usually ignored. In this approach of
lightweight model checking, user-defined properties represent le-
gal or illegal sequences of operations, and are represented by finite
automata. Transitions are triggered by syntactic patterns matching
program statements. Checking is done by conceptually executing

the automata along the CFG. Lightweight model checkers include
an early tool called Cesar [28] for checking Fortran and his evo-
lution called FLAVERS [8] for Ada and Java, MC [14] for C and
its variant MJ [2] for Java, MOPS [6] and Uno [22] for C, PQL
[24] for Java and CodeSurfer Path Inspector [10] for C. Engler et
al. clearly demonstrated the practical usefulness of the lightweight
model checking approach, by applying MC to detect hundreds of
system programming bugs [14] and security bugs [1] in C code.
The running time complexity of these tools has been precisely an-
alyzed in the framework of parametric regular path queries [23].
The checks allowed by our tool are a particular case of lightweight
model checks where the automaton has a fixed form with only three
states. One original feature of Condate is allowing to define transi-
tions that depend on variable values, using the “+” and “-” patterns.
On the other hand, all cited tools are distinct from the compiler, and
therefore duplicate a great amount of analysis work. Note also that
our unrestricted, language-independent pattern matching could be
useful in many of these tools.

More precise program checkers take into account variable val-
ues in order to distinguish between feasible and unfeasible paths,
by using for example symbolic computation, such as in PREfix [4]
and its successor PREfast. Among path-sensitive checkers, SLAM
[3], Blast [20], and ESP [13], express user properties as automata.
The BLAST checking algorithm has been integrated within an ex-
isting IDE as an Eclipse plug-in and optimized to work incremen-
tally, in order to support “Extreme model checking” [21], which
consists of performing user checks on each release of a program,
during software development. These tools integrate complex sub-
systems such as symbolic executors, theorem provers and/or ex-
pression simplifiers, that cannot reasonably be integrated within
compilers. This means that they are designed to remain standalone
tools, used out of the critical path in development. Our approach for
permanent checking is complementary to extreme model checking,
as it chooses to perform simpler checks but that can be integrated
easily in every compiler and re-done at every compilation.

CRQs used in Condate are a variant of parametric regular path
queries [23], with the following modifications:

• we only allow existential queries, which can be solved more
efficiently than universally quantified queries

• edges on the CFG are directly labeled with program instruc-
tions, instead of some abstractions thereof; this eliminates the
need of a check-specific front-end

• we allow to encode a minimal amount of dataflow information
in regular expressions, through the “+” and “-” labels; this
significantly augments their expressiveness.

Typestate verification [16] is similar to this paper in the sense
that it defines classes of regular expressions over program events
that are checkable in polynomial time. However, the checks de-
scribed here do not belong to any of those classes. On the other
hand, typestate verification problems take into account (a single
level of) aliases among variables, while we currently ignore alias
information.

9. Conclusions
Condate makes it possible for every programmer to define new
checks performed internally by the compiler, without a prohibitive
overhead of doing so. However, there is still much room for perfor-
mance improvement.

User-defined checks may increase the confidence of a program-
mer with respect to his or hers code, especially if used on a contin-
uous basis during development. The checks expressible today are
quite limited but non-trivial, as they refer simultaneously to syntax,
semantics, control and data flow. At the syntactic level, checks in

Condate are very easy to write and to understand, because writing
patterns in concrete syntax does not require deep knowledge about
the AST internal representation in the compiler, nor of any API
to traverse it. The control and data flow level are very intuitively
expressed as reachability under constraints using variables shared
by the patterns. Of course, adding semantic constraints in the pat-
tern requires knowledge of the functions internal to the compiler,
but our experiment showed that semantic patterns less frequently
needed.

The language can be extended in different ways. First, more
comfort could be added for the programmer by defining macros
reusable between CRQs. Then, new kinds of checks could be
added, either by defining other classes of regular path expressions
that can be checked efficiently, or by integrating for instance checks
base on type qualifiers into the language. Finally, the language
could be integrated in the subject programming language (C in our
example) to define for example checks exported by a library aside
its normal interface.

Another open research avenue is to explore further the possible
interactions and cross-fertilization between checking on one hand
and program analyses, optimizations and transformations on the
other hand.

Today, most often programmers have to adapt themselves to
compiler idiosyncrasies. Tomorrow this will surely have to change.
Condate is a particular point in a wide spectrum of possible designs.
We can probably foresee a future trend of more semantic-enabled
and more user-centric compilers, obtained by fusing together com-
pilation with other powerful analyzers. In this perspective, we can
already experiment with different proto-languages for that conflu-
ence.

A. Complete Condate listing
The complete checkers used by mygcc to performs all the men-
tioned tests on the Linux kernel are listed in the following.

FREE checker:
Do not use freed memory.
from "kfree_skb(%X)" or "dev_kfree_skb_any(%X)" or

"kfree(%X)"
to "%_ = %X->%_" or "%X->%_ = %_"
avoid "%X = %_"

BLOCK checker (1/2):
To avoid deadlock, do not call blocking
functions with interrupts enabled.
from "__global_cli()"
to "%_ = request_irq(%_,%_,%_,%_,%_)" or

"%_ = tty_register_driver(%_)" or
"%_ = __constant_copy_from_user(%_,%_,%_)" or
"%_ = __generic_copy_from_user(%_,%_,%_)" or
"%_ = __constant_copy_to_user(%_,%_,%_)" or
"%_ = __generic_copy_to_user (%_,%_,%_)"

avoid "__global_restore_flags(%_)"

BLOCK checker (2/2):
To avoid deadlock, do not call blocking
functions with a spinlock held.
from "spin_lock(%X)" or "spin_lock(%X + %Y)"
to "ia_tx_poll(%X)" or

"%_ = ia_pkt_tx(%_,%_)" or
"%_ = ia_start(%_)" or
"%_ = __constant_copy_from_user(%_,%_,%_)" or
"%_ = __generic_copy_from_user(%_,%_,%_)" or
"%_ = __constant_copy_to_user(%_,%_,%_)" or
"%_ = __generic_copy_to_user(%_,%_,%_)"

avoid "spin_unlock(%X)" or "spin_unlock(%X + %Y)"

NULL checker:
Check potentially null pointers returned from
functions.
from "%X = drm_alloc(%_,%_)" or

"%X = vmalloc(%_)" or
"%X = kmalloc(%_,%_)" or
"%X = alloc_pages(%_,%_)" or
"%X = sb_bread(%_,%_)" or
"%X = init_etherdev(%_,%_)" or
"%X = dev_alloc_skb(%_)" or
"%X = skb_clone(%_,%_)" or
"%X = iget(%_,%_)" or
"%X = iget_locked(%_,%_)" or
"%X = create_proc_entry(%_,%_,%_)" or
"%X = kmem_cache_alloc(%_,%_)" or
"%X = scsi_register(%_,%_)" or
"%X = udf_tread(%_,%_)" or
"%X = hpfs_map_anode(%_,%_,%_)" or
"%X = __idetape_kmalloc_stage(%_,%_,%_)" or
"%X = alloc_skb(%_,%_)" or
"%X = findcontrbydriverid(%_)" or
"%X = ipc_alloc(%_)" or
"%X = fore200e_kmalloc(%_,%_)" or
"%X = pci_alloc_consistent(%_,%_,%_)" or
"%X = scsi_malloc(%_)" or
"%X = hfs_malloc(%_)" or
"%X = ckmalloc(%_)" or
"%X = get_usb_bluetooth(%_,%_)" or
"%X = kmalloc_node(%_,%_,%_)" or
"%X = alloc_etherdev(%_)" or
"%X = __bread(%_,%_,%_)" or
"%X = __dev_alloc_skb(%_,%_)" or
"%X = ipc_rcu_alloc(%_)"

to "__constant_c_and_count_memset(%X,%_,%_)" or
"%_=__constant_c_and_count_memset(%X,%_,%_)"
or "__constant_c_memset(%X,%_,%_)" or
"%_ = __constant_c_memset(%X,%_,%_)" or
"__constant_memcpy(%X,%_,%_)" or
"__constant_memcpy3d(%X,%_,%_)" or
"%_ = __constant_memcpy3d(%X,%_,%_)" or
"__memcpy(%X,%_,%_)" or
"%_ = __constant_memcpy(%X,%_,%_)" or
"%_ = __memcpy(%X,%_,%_)" or
"%_ = %X->%_" or "%X->%_ = %_" or
"%X->%_[%_] = %_" or "*\(%X + %_\) = %_" or
"%_ = *\(%X + %_\)" or
"*\(\(%X + %_\) - %_\) = %_" or
"\(\(\(%X + %_\)->%_\) = %_\)" or
"%_ = strncmp(%X,%_,%_)" or
"%_ = *\(\(%X + %_\) + %_\)"

avoid +"%X != 0" or +"%X != 0B" or "%X = %_" or
-"%X == 0" or -"%X == 0B" or
-"\(\(%X == 0B\) || %_\)"

Acknowledgments
The author would like to thank Nathalie Deleau for continuous
support during this work. Thanks also to Paco Babane for his
essential contribution in the implementation, and to Romeo for
useful help when typesetting the paper.

References
[1] K. Ashcraft, D. Engler. “Using Programmer-Written Compiler Exten-

sions to Catch Security Holes”. In Proc. IEEE Symp. on Security and
Privacy. May 2002.

[2] G. Back, D. Engler. “MJ - a system for constructing bug-finding
analyses for Java”. Technical report, Stanford University. September
2003.

[3] T. Ball, S. Rajamani. “The SLAM Toolkit”. In Proceedings of the 13th
International Conference on Computer Aided Verification. LNCS Vol.
2102. 2001.

[4] W. R. Bush, J. D. Pincus, and D. J. Sielaff. “A static analyzer for finding
dynamic programming errors”. Software - Practice and Experience, vol.
30(7). 2000.

[5] Checkstyle. Open-source project at SourceForge.net.
http://checkstyle.sourceforge.net

[6] H. Chen, D. Wagner. “MOPS: an infrastructure for examining security
properties of software”. In Proceedings of the 9th ACM Conference
on Computer and Communications Security (CCS). Washington, DC.
November 2002.

[7] A. Chou, J. Yang, B. Chelf, S. Hallem, D. Engler, An empirical study
of operating system errors. In 18th Symp. Operating Systems Principles
(SOSP). Oct 2001.

[8] J. Cobleigh, L. Clarke, L. Osterweil. “FLAVERS: A finite state
verification technique for software systems”. IBM Systems Journal,
41(1). 2002.

[9] CodeCheck. Abraxas Software, Inc. http://www.abxsoft.com

[10] CodeSurfer Path Inspector. Gramma Tech.
http://www.grammatech.com

[11] R. Crew. “ASTLOG: A Language for Examining Abstract Syntax
Trees”. In USENIX Conference on Domain-Specific Languages.
October 1997.

[12] P. Devanbu. “GENOA — a customizable, front-end-retargetable
source code analysis framework”. ACM Transactions on Software
Engineering and Methodology (TOSEM) vol 8(2). April 1999.

[13] M. Das, S. Lerner, M. Seigle. “Esp: Path-sensitive program verifica-
tion in polynomial time”. In Proc. ACM SIGPLAN Conf. on Program-
ming Language Design and Implementation (PLDI), Jan. 2002.

[14] D. Engler, B. Chelf, A. Chou, S. Hallem. “Checking System Rules Us-
ing System-Specific, Programmer-Written Compiler Extensions”. Proc.
of 4th Symposium on Operating System Design and Implementation
(OSDI), San Diego. October 2000.

[15] D. Evans, D. Larochelle. “Improving Security Using Extensible
Lightweight Static Analysis”. IEEE Software 19(1). January 2002.

[16] J. Field, D. Goyal, G. Ramalingam, and E. Yahav. “Typestate
verification: Abstraction techniques and complexity results”. In Proc. of
SAS’03, volume 2694 of LNCS, pages 439–462. Springer, June 2003.

[17] J. Foster, M. Fhndrich, A. Aiken. “A Theory of Type Qualifiers”. In
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI). Atlanta, Georgia. May 1999.

[18] J. Foster, T. Terauchi, A. Aiken. “Flow-Sensitive Type Qualifiers”.
In ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI). Berlin, Germany. June 2002.

[19] W. Griswold, D. Atkinson, C. McCurdy. “Fast, Flexible Syntactic
Pattern Matching and Processing”. In 4th International Workshop on
Program Comprehension. 1996.

[20] T. Henzinger, R. Jhala, R. Majumdar, G. Necula, G. Sutre, W.
Weimer. “Temporal-Safety Proofs for Systems Code”. Proc. of the
14th International Conference on Computer-Aided Verification (CAV).
LNCS 2404. Springer-Verlag, 2002.

[21] T. Henzinger, R. Jhala, R. Majumdar, M. Sanvido. “Extreme
model checking”. In Proceedings of the International Symposium on
Verification: Theory and Practice. LNCS 2772. Springer-Verlag, 2004.

[22] G. Holzmann. “Static source code checking for user-defined proper-

ties.” In World Conference on Integrated Design and Process Technol-
ogy, Pasadena, CA, June 2002. Society for Design and Process Science.

[23] Y. Liu, T. Rothamel, F. Yu, S. Stoller, N. Hu. “Parametric regular path
queries”. ACM SIGPLAN Notices, 39(6) (PLDI). May 2004.

[24] M. Martin, B. Livshits, M. Lam. “Finding application errors and
security flaws using PQL: a program query language”. In Proceedings
of the 20th annual ACM SIGPLAN conference on Object oriented
programming systems languages and applications (OOPSLA). 2005.

[25] MC bug viewer. http://metacomp.stanford.edu

[26] J. Merill, “GENERIC and GIMPLE: A New Tree Representation for
Entire Functions”. Proc. of the GCC 2003 Summit.

[27] Mygcc prototype and documentation. http://mygcc.free.fr

[28] K. Olender , L. Osterweil. “Cesar: a static sequencing constraint an-
alyzer”. ACM SIGSOFT Software Engineering Notes 14(8). December
1989.

[29] PMD. Open-source project at SourceForge.net.
http://pmd.sourceforge.net/

[30] T. Reps. “Program analysis via graph reachability”. Information and
Software Technology 40(11-12). November/December 1998.

[31] B. K. Rosen, M. N. Wegman, F. K. Zadeck. “Global Value Num-
bers and Redundant Computations”. In Proceedings of the 15th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages. 1988.

[32] Splint. Open-source project. http://www.splint.org

[33] N. Volanschi. “Unparsed patterns: integrating unrestricted, concrete
syntax pattern matching in any compiler”. January 2006. Submitted for
publication.

[34] N. Volanschi. “A Portable Compiler-Integrated Approach to Per-
manent Checking”. In Proceedings of the 21st IEEE/ACM International
Conference on Automated Software Engineering (ASE), Tokyo. Septem-
ber 2006. To appear.

